Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lý thuyết, các dạng toán và bài tập phép nhân và phép chia đa thức

Tài liệu gồm 59 trang, tóm tắt lý thuyết, các dạng toán và bài tập phép nhân và phép chia đa thức, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 1) phần Đại số chương 1. Bài 1. Nhân đơn thức với đa thức. Bài 2. Nhân đa thức với đa thức. + Dạng 1. Làm tính nhân. + Dạng 2. Tính giá trị của biểu thức. + Dạng 3. Rút gọn biểu thức. + Dạng 4. Tìm x thỏa mãn đẳng thức cho trước. + Dạng 5. Chứng minh giá trị biểu thức không phụ thuộc vào giá trị của biến. + Dạng 6. Giải toán bằng cách đặt ẩn x. + Dạng 7. Chứng minh đẳng thức. + Dạng 8. Áp dụng vào số học. + Dạng 9. Đa thức đồng nhất bằng nhau. Bài 3 – Bài 4 – Bài 5. Những hằng đẳng thức đáng nhớ. + Dạng 1. Áp dụng các hằng đẳng thức đáng nhớ để tính. + Dạng 2. Chứng minh đẳng thức. + Dạng 3. Tính nhanh. + Dạng 4. Rút gọn biểu thức và tính giá trị của biểu thức. + Dạng 5. Điền vào ô trống các hạng từ thích hợp. + Dạng 6. Biểu diễn đa thức dưới dạng bình phương, lập phương của một tổng (một hiệu). + Dạng 7. Một số hằng đẳng thức tổng quát. Bài 6 – Bài 7 – Bài 8 – Bài 9. Phân tích đa thức thành nhân tử. + Dạng 1. Phân tích đa thức thành nhân tử. + Dạng 2. Tính nhanh. + Dạng 3. Tính giá trị của biểu thức. + Dạng 4. Tìm x thỏa mãn đẳng thức cho trước. + Dạng 5. Áp dụng vào số học. + Dạng 6. Tìm các cặp số nguyên (x;y) thỏa mãn đẳng thức cho trước. + Dạng 7. Phương pháp đặt ẩn phụ. + Dạng 8. Phương pháp hệ số bất định. + Dạng 9. Chứng minh đẳng thức. + Dạng 10. Chứng minh bất đẳng thức. Bài 10. Chia đơn thức cho đơn thức. Bài 11. Chia đa thức cho đơn thức. + Dạng 1. Làm tính chia. + Dạng 2. Tính giá trị biểu thức. + Dạng 3. Không làm tính chia, xét xem đa thức a có chia hết cho đơn thức b không? Bài 12. Chia đa thức một biến đã sắp xếp. + Dạng 1. Thực hiện phép chia đa thức. + Dạng 2. Tính nhanh. + Dạng 3. Áp dụng định lí Bézout để phân tích đa thức ra thừa số. + Dạng 4. Tìm số nguyên n để biểu thức a(n) chia hết cho biểu thức b(n). + Dạng 5. Phân tích đa thức thành nhân tử bằng phương pháp xét giá trị riêng. + Dạng 6. Tìm các hệ số để đa thức f(x) chia hết cho g(x). + Dạng 7. Tìm dư trong phép chia đa thức. Ôn tập chương I. A. Bài tập ôn trong SGK. B. Bài tập bổ sung.

Nguồn: toanmath.com

Đọc Sách

Lý thuyết, các dạng toán và bài tập tam giác đồng dạng
Nội dung Lý thuyết, các dạng toán và bài tập tam giác đồng dạng Bản PDF - Nội dung bài viết 48 trang tài liệu về lý thuyết, các dạng toán và bài tập tam giác đồng dạng cho học sinh lớp 8 48 trang tài liệu về lý thuyết, các dạng toán và bài tập tam giác đồng dạng cho học sinh lớp 8 Tài liệu này bao gồm 48 trang tóm tắt về lý thuyết, các dạng toán và bài tập liên quan đến tam giác đồng dạng. Đây là tài liệu hữu ích giúp học sinh lớp 8 nắm vững kiến thức khi học chương trình. Các dạng toán và bài tập được trình bày cụ thể và dễ hiểu, giúp học sinh thực hành và rèn luyện kỹ năng giải toán một cách hiệu quả. Tài liệu còn giúp học sinh áp dụng lý thuyết vào thực hành, rèn luyện khả năng vận dụng kiến thức vào giải quyết vấn đề. Với nội dung đa dạng và phong phú, tài liệu này sẽ là nguồn thông tin hữu ích để học sinh tự học và ôn tập.
Lý thuyết, các dạng toán và bài tập bất phương trình bậc nhất một ẩn
Nội dung Lý thuyết, các dạng toán và bài tập bất phương trình bậc nhất một ẩn Bản PDF - Nội dung bài viết Tài liệu học toán Bất phương trình bậc nhất một ẩn Tài liệu học toán Bất phương trình bậc nhất một ẩn Tài liệu này gồm tổng cộng 37 trang, cung cấp tóm tắt về lý thuyết, các dạng toán và bài tập liên quan đến bất phương trình bậc nhất một ẩn. Được thiết kế để hỗ trợ học sinh lớp 8 khi học chương trình toán học. Không chỉ giúp học sinh hiểu rõ lý thuyết mà còn cung cấp các bài tập thực hành giúp củng cố kiến thức và kỹ năng tính toán. Tài liệu này là nguồn tài liệu hữu ích giúp học sinh nắm vững và tự tin hơn khi giải các dạng toán bất phương trình bậc nhất một ẩn.
Lý thuyết, các dạng toán và bài tập phương trình bậc nhất một ẩn
Nội dung Lý thuyết, các dạng toán và bài tập phương trình bậc nhất một ẩn Bản PDF - Nội dung bài viết Lý thuyết, các dạng toán và bài tập phương trình bậc nhất một ẩn Lý thuyết, các dạng toán và bài tập phương trình bậc nhất một ẩn Tài liệu này bao gồm 43 trang, cung cấp tóm tắt lý thuyết, các dạng toán và bài tập về phương trình bậc nhất một ẩn, nhằm hỗ trợ học sinh lớp 8 trong quá trình học tập chương trình Toán lớp 8 (tập 2) phần Đại số chương 3. Trang 1: Mở đầu về phương trình. Trang 2: Phương trình bậc nhất một ẩn và cách giải. Các dạng bao gồm: Xét x = a có là nghiệm của phương trình không? Xét hai phương trình có tương đương nhau không? Nhận dạng phương trình bậc nhất một ẩn số. Giải phương trình bậc nhất. Trang 3: Phương trình đưa được về dạng ax + b = 0. Các dạng bao gồm: Tìm chỗ sai và sửa lại các bài giảng phương trình. Giải phương trình. Giải bài toán bằng cách lập phương trình. Đây là tài liệu cung cấp kiến thức cơ bản và bài tập thực hành giúp học sinh hiểu rõ hơn về phương trình bậc nhất một ẩn, từ đó cải thiện kỹ năng giải toán và nắm vững nội dung môn Toán lớp 8.
Lý thuyết, các dạng toán và bài tập đa giác và diện tích đa giác
Nội dung Lý thuyết, các dạng toán và bài tập đa giác và diện tích đa giác Bản PDF - Nội dung bài viết Hướng dẫn toán học đa giác và diện tích đa giác Hướng dẫn toán học đa giác và diện tích đa giác Bạn đang cần tìm hiểu về lý thuyết, các dạng toán và bài tập liên quan đến đa giác và diện tích đa giác? Vậy thì tài liệu này chính là điểm đến lý tưởng dành cho bạn! Với 33 trang nội dung chi tiết, tóm tắt lý thuyết, các dạng toán và bài tập thực hành, bạn sẽ có được kiến thức cần thiết để giải quyết các bài toán trong chương trình học của mình. Tài liệu được thiết kế dành riêng cho học sinh lớp 8, giúp họ nắm vững kiến thức và áp dụng vào thực hành một cách hiệu quả. Đồng thời, việc phân tích chi tiết và cụ thể trong tài liệu cũng giúp bạn hiểu rõ hơn về các khái niệm cơ bản liên quan đến đa giác và diện tích đa giác. Nhấn mạnh vào việc thực hành thông qua bài tập, tài liệu này sẽ giúp bạn rèn luyện kỹ năng giải quyết bài toán, tăng cường khả năng tư duy logic và logic. Hãy sử dụng tài liệu này như một công cụ hữu ích để nâng cao kiến thức toán học của mình!