Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán 11 năm 2023 - 2024 sở GDĐT Quảng Ngãi

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 11 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Ngãi; kỳ thi được diễn ra vào ngày 02 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 11 năm 2023 – 2024 sở GD&ĐT Quảng Ngãi : + Huyết áp là áp lực cần thiết tác động lên thành của động mạch để đưa máu từ tim đến nuôi dưỡng các mô trong cơ thể. Huyết áp được tạo ra do lực co bóp của cơ tim và sức cản của thành động mạch. Mỗi lần tim đập, huyết áp của chúng ta tăng rồi giảm giữa các nhịp. Huyết áp tối đa và huyết áp tối thiểu tương ứng gọi là huyết áp tâm thu và huyết áp tâm trương. Chỉ số huyết áp của chúng ta được viết là tâm thu/tâm trương. Chỉ số huyết áp 120/80 là bình thường. Giả sử một người nào đó có nhịp tim là 70 lần trên phút và huyết áp của người đó được mô hình hóa bởi hàm số 100 20sin 3 P ở đó P t là huyết áp tính theo đơn vị mmHg (milimét thủy ngân) và thời gian t tính theo giây. Trong khoảng thời gian từ 0 đến 2 giây, hãy xác định số lần huyết áp là 90 mmHg. + Trong một hoạt động ngoại khóa của Đoàn trường, lớp Thảo định mở một gian hàng bán trà sữa và kem que. Biết giá gốc một ly trà sữa là 15000 đồng, một que kem là 5000 đồng. Các bạn dự kiến bán trà sữa với giá 20000 đồng/1ly và kem giá 8000 đồng/1que. Dựa vào thống kê số người tham gia hoạt động và nhu cầu thực tế, các bạn trong lớp dự kiến tổng số ly trà sữa và số que kem bán được không vượt quá 200. Theo quỹ lớp thì số tiền lớp Thảo được dùng không quá 2000000 đồng. Hỏi lớp Thảo có thể đạt được tối đa lợi nhuận là bao nhiêu? b) Gọi S là tập hợp các số nguyên dương n thỏa mãn tính chất “n có đúng 35 ước số nguyên dương”. Tìm số nguyên dương nhỏ nhất của tập hợp S đã cho. + Cho đa giác đều có 4n đỉnh n 2. Gọi S là tập hợp tất cả các tam giác có ba đỉnh là ba trong 4n đỉnh của đa giác đều đã cho. Chọn ngẫu nhiên một tam giác thuộc tập S. Gọi A là biến cố: “Tam giác được chọn là tam giác vuông nhưng không cân”. Tìm giá trị nguyên dương nhỏ nhất của n biết rằng xác suất của biến cố A nhỏ hơn 2 7.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG lớp 11 môn Toán năm 2021 2022 sở GD ĐT Quảng Bình
Nội dung Đề thi chọn HSG lớp 11 môn Toán năm 2021 2022 sở GD ĐT Quảng Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán lớp 11 năm học 2021 – 2022 và chọn đội dự tuyển dự thi chọn học sinh giỏi Quốc gia môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Bình (vòng 1 và vòng 2); kỳ thi được diễn ra vào ngày 25 tháng 04 năm 2022; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn HSG Toán lớp 11 năm 2021 – 2022 sở GD&ĐT Quảng Bình : + Gọi S là tập hợp tất cả các số nguyên dương nhỏ hơn 1000. Một số thuộc S được gọi là số “thú vị” nếu số đó là hợp số và không chia hết cho ba số 2; 3; 5. Chọn ngẫu nhiên một số từ S, tính xác suất để số được chọn là số “thú vị”. + Người ta tô màu tất cả các số nguyên dương bằng hai màu xanh và đỏ (mỗi số chỉ được tô đúng một màu). Biết rằng có vô hạn các số được tô màu xanh và tổng của hai số được tô khác màu là một số được tô màu đỏ. Gọi số nguyên dương nhỏ nhất lớn hơn 1 được tô màu đỏ là q. a. Hãy chỉ ra (có chứng minh) một cách tô màu thỏa mãn yêu cầu bài toán khi q = 2. b. Chứng minh rằng q là một số nguyên tố. + Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, SA vuông góc với mặt phẳng ABCD và SA a AB b AD c. Gọi H là hình chiếu vuông góc của A lên mặt phẳng SBD. a. Trong trường hợp SA AB AD 7 1 gọi P là mặt phẳng đi qua A và vuông góc với SC. Hãy xác định thiết diện của hình chóp S ABCD khi cắt bởi mặt phẳng P và tính diện tích thiết diện đó. b. Chứng minh rằng H là trực tâm của tam giác SBD. c. Chứng minh rằng 3 2 HBD HSD HSB abc a S b S c S ở đây kí hiệu XYZ S là diện tích của tam giác XYZ.
Đề thi học sinh giỏi lớp 11 môn Toán năm 2021 2022 cụm trường THPT Hà Nội
Nội dung Đề thi học sinh giỏi lớp 11 môn Toán năm 2021 2022 cụm trường THPT Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp cụm môn Toán lớp 11 năm học 2021 – 2022 cụm trường THPT trực thuộc sở Giáo dục và Đào tạo Hà Nội.
Đề thi học sinh giỏi cấp tỉnh lớp 11 môn Toán năm 2021 2022 sở GD ĐT Lạng Sơn
Nội dung Đề thi học sinh giỏi cấp tỉnh lớp 11 môn Toán năm 2021 2022 sở GD ĐT Lạng Sơn Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 11 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Lạng Sơn. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán lớp 11 năm 2021 – 2022 sở GD&ĐT Lạng Sơn : + Tìm số hạng không chứa x trong khai triển với x khác 0, biết n là số nguyên dương thỏa mãn. + Cho một đa giác đều 2n đỉnh với n >= 3. Gọi S tập các tam giác cân, không đều và có ba đỉnh là ba đỉnh của đa giác. Gọi T là tập tất cả các tam giác có ba đỉnh là ba đỉnh của đa giác. Chứng minh rằng số phần tử của tập T\S không vượt quá. + Một cái phễu có dạng hình nón có chiều cao bằng 3cm. Người ta đổ một lượng nước vào phễu sao cho chiều cao của lượng nước trong phễu bằng chiều cao của phễu. Bịt kín miệng của phễu, tính chiều cao mực nước trong nón sau khi lật lại (biết công thức tính thể tích của khối nón có bán kính đáy r = OA và chiều cao h = SO là V = 1/3pir2h).
Đề thi học sinh giỏi cấp tỉnh lớp 11 môn Toán năm 2021 2022 sở GD ĐT Bình Định
Nội dung Đề thi học sinh giỏi cấp tỉnh lớp 11 môn Toán năm 2021 2022 sở GD ĐT Bình Định Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 11 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Bình Định; kỳ thi được diễn ra vào thứ Sáu ngày 18 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán lớp 11 năm 2021 – 2022 sở GD&ĐT Bình Định : + Rút ngẫu nhiên 8 tấm thẻ trong 20 tấm thẻ được đánh số từ 1 đến 20. Tìm xác suất để 8 tấm thẻ rút ra có 5 tấm thẻ mang số lẻ, 3 tấm thẻ mang số chẵn, trong đó có đúng 3 tầm thẻ mang số chia hết cho 3. + Trong mặt phẳng Oxy, cho tam giác ABC cân tại A(-1;3). Gọi D là một điểm trên cạnh AB sao cho AB = 3AD và H là hình chiếu vuông góc của B trên CD. Điểm M là trung điểm đoạn HC. Xác định tọa độ điểm C biết đỉnh B nằm trên đường thẳng x + y + 7 = 0. + Cho hình thoi ABCD có BAD = 60° và AB = 2a. Gọi H là trung điểm AB, trên đường thẳng d vuông góc với mặt phẳng (ABCD) tại H lấy điểm S thay đổi khác H. Tính SH khi góc giữa SC và mặt phẳng (SAD) có số đo lớn nhất.