Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPT Quốc gia 2019 lần 1 trường Lương Thế Vinh - Hà Nội

giới thiệu đến thầy, cô và các em nội dung đề thi thử Toán THPT Quốc gia 2019 lần 1 trường Lương Thế Vinh – Hà Nội, có 4 mã đề: 110, 111, 112, 113, đề được biên soạn tương tự đề tham khảo môn Toán năm 2019 mà Bộ Giáo dục và Đào tạo đã từng công bố cho kỳ thi Toán năm nay, đề gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài thi 90 phút, kỳ thi được diễn ra vào thứ Bảy, ngày 12 tháng 01 năm 2019, đề thi có đáp án các mã đề 110, 111, 112, 113. Trích dẫn đề thi thử Toán THPT Quốc gia 2019 lần 1 trường Lương Thế Vinh – Hà Nội : + Một hộp đựng 9 thẻ được đánh số 1, 2, 3, 4, 5, 6, 7, 8, 9. Rút ngẫu nhiên đồng thời hai thẻ và nhân hai số ghi trên hai thẻ lại với nhau. Tính xác suất để kết quả thu được là một số chẵn. + Một ô tô đang chạy với vận tốc 10m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc v(t) = −2t+ 10 (m/s), trong đó t là khoảng thời gian tính bằng giây, kẻ từ lúc bắt đầu đạp phanh. Tính quãng đường ô tô di chuyển được trong 8 giây cuối cùng. + Cho hàm số bậc ba y = f(x) có đồ thị (C) như hình vẽ, đường thẳng d có phương trình y = x − 1. Biết phương trình f(x) = 0 có ba nghiệm x1 < x2 < x3. Giá trị của x1x3 bằng? [ads] + Cho hàm số y = f(x) có đồ thị như hình bên. Gọi S là tập tất cả các giá trị nguyên dương của tham số m để hàm số y = |f(x − 2018) + m| có 5 điểm cực trị. Tổng tất cả các giá trị của tập S bằng? + Cho hàm số y = x^3 − 3x^2 + 4 có đồ thị (C), đường thẳng (d): y = m(x + 1) với m là tham số, đường thẳng (∆): y = 2x + 5. Tìm tổng tất cả các giá trị của tham số m để đường thẳng (d) cắt đồ thị (C) tại 3 điểm phân biệt A(−1; 0), B, C sao cho d(B, ∆) + d(C, ∆) = 6√5.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán THPTQG 2018 trường THPT Nam Tiền Hải - Thái Bình lần 3
Đề thi thử Toán THPTQG 2018 trường THPT Nam Tiền Hải – Thái Bình lần 3 mã đề 202 được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi, thí sinh có 90 phút để làm bài, kỳ thi thử Toán được tổ chức vào ngày 09/06/2018 nhằm tạo điều kiện để các em củng cố lại kiến thức đã ôn tập trong suốt thời gian qua, trong thời điểm kỳ thi còn khoảng 1 tuần nữa sẽ diễn ra, đề thi có đáp án đầy đủ các mã đề. Trích dẫn đề thi thử Toán THPTQG 2018 trường THPT Nam Tiền Hải – Thái Bình lần 3 : + Một đề thi môn Toán có 50 câu hỏi trắc nghiệm khách quan, mỗi câu hỏi có 4 phương án trả lời, trong đó có đúng một phương án là đáp án. Học sinh chọn đúng đáp án được 0, 2 điểm, chọn sai đáp án không được điểm. Một học sinh làm đề thi đó, chọn ngẫu nhiên các phương án trả lời của tất cả 50 câu hỏi, xác suất để học sinh đó được 5,0 điểm bằng? [ads] + Trong không gian với hệ trục toạ độ (Oxyz), cho mặt cầu (S): (x – 1)^2 + (y – 2)^2 + (z – 3)^2 = 9, điểm A(0;0;2). Phương trình mặt phẳng (P) đi qua A và cắt mặt cầu (S) theo thiết diện là hình tròn (C) có diện tích nhỏ nhất là? + Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA vuông góc với mặt phẳng (ABCD), góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 45 độ. Biết rằng thể tích khối chóp S.ABCD bằng a^3.√2/3. Khoảng cách giữa hai đường thẳng SB và AC bằng?
Đề thi thử Toán THPTQG 2018 trường THPT Lê Văn Thịnh - Bắc Ninh lần 3
Đề thi thử Toán THPTQG 2018 trường THPT Lê Văn Thịnh – Bắc Ninh lần 3 mã đề 602 được biên soạn nhằm tạo điều kiện để các em học sinh 12 củng cố và nâng cao kiến thức, kỹ năng giải toán trong thời điểm kỳ thi THPT Quốc gia 2018 đã cận kề, đề gồm 06 trang với 50 câu hỏi trắc nghiệm khách quan, thí sinh làm bài trong thời gian 90 phút, đề thi có đáp án . Trích dẫn đề thi thử Toán THPTQG 2018 trường THPT Lê Văn Thịnh – Bắc Ninh lần 3 : + Trong các mệnh đề sau, mệnh đề nào sai? A. Mọi hàm số liên tục trên K đều có nguyên hàm trên K. B.Nếu F(x), G(x) là hai nguyên hàm của hàm số f(x) thì F(x) + G(x) = C, với C là một hằng số. C. Nếu F(x) là một nguyên hàm của hàm số f(x) thì F(x) + 1 cũng là một nguyên hàm của hàm số f(x). D. Nếu F(x) là một nguyên hàm của hàm số f(x) thì ∫fxdx = F(x) + C, với C là một hằng số. [ads] + Cho hai số thực b; c (c > 0). Kí hiệu A; B là hai điểm của mặt phẳng phức biểu diễn hai nghiệm của phương trình z^2 + 2bz + c = 0, tìm điều kiện của b và c sao cho tam giác OAB là tam giác vuông (với O là gốc tọa độ). + Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông tại B với AB = 3, AA’ = 2 . Gọi M là trung điểm cạnh A’B, G là trọng tâm tam giác ABC, (a) là mặt phẳng đi qua MG và song song với BC. Tính khoảng cách d từ điểm A đến mặt phẳng (a).
Đề thi thử Toán THPTQG 2018 trường chuyên Lê Thánh Tông - Quảng Nam lần 3
Đề thi thử Toán THPTQG 2018 trường chuyên Lê Thánh Tông – Quảng Nam lần 3 mã đề 131 được biên soạn nhằm giúp các em học sinh ôn tập, củng cố và nâng cao kiến thức – kỹ năng giải toán để có thể đạt được điểm số tốt nhất trong kỳ thi THPT Quốc gia 2018 môn Toán, đề được biên soạn bám sát đề minh họa của Bộ GD và ĐT với cấu trúc 50 câu hỏi trắc nghiệm khách quan, thời gian làm bài 90 phút.
Đề thi thử Toán THPTQG 2018 trường THPT Newton - Hà Nội lần 7
Đề thi thử Toán THPTQG 2018 trường THPT Newton – Hà Nội lần 7 mã đề 123 được biên soạn bám sát đề tham khảo môn Toán của Bộ Giáo dục và Đào tạo, đề gồm 6 trang với 50 câu hỏi trắc nghiệm, thí sinh làm bài trong thời gian 90 phút, đề thi có đáp án . Trích dẫn đề thi thử Toán THPTQG 2018 trường THPT Newton – Hà Nội lần 7 : + Một hội nghị gồm 6 đại biểu nước A; 7 đại biểu nước B và 7 đại biểu nước C trong đó mỗi nước có hai đại biểu là nữ. Chọn ngẫu nhiên ra 4 đại biểu, xác suất để chọn được 4 đại biểu để mỗi nước đều có ít nhất một đại biểu và có cả đại biểu nam và đại biểu nữ bằng? [ads] + Một người gửi 50 triệu đồng vào một ngân hàng với lãi suất 7%/năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo. Hỏi sau đúng 5 năm người đó mới rút lãi thì số tiền lãi người đó nhận được gần nhất với số tiền nào dưới đây? nếu trong khoảng thời gian này người này không rút tiền ra và lãi suất không thay đổi. + Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 1, góc giữa cạnh bên và mặt đáy bằng 60 độ. Gọi A’, B’, C’ lần lượt là các điểm đối xứng của A, B, C qua S. Thể tích của khối đa diện ABC.A’B’C’ bằng?