Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán 12 năm 2022 - 2023 lần 1 trường THPT Đông Sơn 1 - Thanh Hóa

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng học sinh giỏi môn Toán 12 năm học 2022 – 2023 lần 1 trường THPT Đông Sơn 1, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 15 tháng 10 năm 2022. Trích dẫn Đề HSG Toán 12 năm 2022 – 2023 lần 1 trường THPT Đông Sơn 1 – Thanh Hóa : + Trong một lần dạo chơi, An vô tình lạc vào một mê cung là một đa giác lồi có 33 cạnh. Để thoát khỏi mê cung thì An phải đi đúng 2 lần với cùng quy luật sau: “Với L là tập hợp các tam giác tạo từ ba đỉnh của đa giác, từ hai tam giác bất kì trong L, An phải đi theo một tam giác có đúng một cạnh là cạnh của đa giác và một tam giác không có cạnh nào là cạnh của đa giác (không phân biệt thứ tự đi)”. Giả sử tất cả các lần đi của An đều đúng thì xác suất thoát khỏi mê cung của An xấp xỉ là bao nhiêu? + Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AD a 2. Cạnh bên SA vuông góc với mặt đáy và SA a 2. Gọi M, N lần lượt là các điểm thỏa mãn hệ thức MS MD 2 và AN AB 2. Biết góc tạo bởi đường thẳng SN với mặt phẳng (SCD) bằng 30°. Khoảng cách giữa hai đường thẳng SN và CM bằng? + Cho khối hộp chữ nhật ABCD A B C D. Khoảng cách giữa 2 đường thẳng AB và BC′ bằng 2 5 5 a khoảng cách giữa 2 đường thẳng BC và AB′ bằng 2 5 5 a. Khoảng cách giữa 2 đường thẳng AC và BD′ bằng 33a. Thể tích khối hộp chữ nhật đã cho bằng?

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi tỉnh Toán 12 năm 2022 - 2023 sở GDĐT Bà Rịa - Vũng Tàu
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào ngày 13 tháng 12 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được biên soạn bởi Nhóm Toán VDC & HSG THPT. Trích dẫn Đề học sinh giỏi tỉnh Toán 12 năm 2022 – 2023 sở GD&ĐT Bà Rịa – Vũng Tàu : + Cho hàm số 3 2 yx m x m x m 2 1 31 22 có đồ thị là (Cm). Tìm tất cả các giá trị tham số m để (Cm) cắt trục hoành tại 3 điểm phân biệt A(2;0), B và C sao cho trong hai điểm B, C có một điểm nằm trong và một điểm nằm ngoài đường tròn 2 2 Cx y 1. + Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B, tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với đáy. Gọi M N lần lượt là trung điểm của SA và BC. Biết AB a và MN tạo với mặt đáy một góc 60°. Tính thể tích khối chóp S ABC theo a. + Cho hàm số f x xác định, liên tục trên R và thoả mãn fx x x cot sin 2 cos 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số gx f xf x trên đoạn [−1;1].
Đề học sinh giỏi Toán THPT cấp tỉnh năm 2022 - 2023 sở GDĐT Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán THPT cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thanh Hóa; đề thi gồm 08 trang với 50 câu trắc nghiệm, thời gian làm bài 180 phút (không kể thời gian phát đề); đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi Diễn Đàn Giáo Viên Toán). Trích dẫn Đề học sinh giỏi Toán THPT cấp tỉnh năm 2022 – 2023 sở GD&ĐT Thanh Hóa : + Cho mặt cầu (S) có tâm O và A là một điểm nằm trên (S). Gọi I K là hai điểm trên đoạn OA sao cho OI IK KA. Các mặt phẳng (P), (Q) lần lượt đi qua I, K cùng vuông góc với OA và cắt mặt cầu (S) theo các đường tròn có bán kính lần lượt là 1r và 2r. Tính tỷ số 2 1 r r. + Cho hình trụ có đáy là hai đường tròn tâm O và tâm O’, bán kính đáy bằng chiều cao và bằng 2a. Trên đường tròn đáy có tâm O lấy hai điểm A D sao cho AD a 15; gọi C là hình chiếu vuông góc của D lên mặt phẳng chứa đường tròn tâm (O’); trên đường tròn tâm (O’) lấy điểm B (AB CD chéo nhau). Đặt α là góc giữa AB với đáy. Tính tanα khi thể tích khối tứ diện ABCD đạt giá trị lớn nhất. + Cho hình vuông kích cỡ 4 x 4 như hình vẽ. Sắp xếp ngẫu nhiên các số tự nhiên từ 1 đến 16 vào 16 ô vuông. Tính xác suất để có tổng bốn số ở các ô trong cùng một hàng hay cùng một cột đều là một số lẻ.
Đề chọn học sinh giỏi Toán THPT vòng tỉnh năm 2022 - 2023 sở GDĐT Vĩnh Long
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán cấp THPT vòng tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Long; đề gồm hai bài thi: Sáng và Chiều; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 08 tháng 01 năm 2023. Trích dẫn Đề chọn học sinh giỏi Toán THPT vòng tỉnh năm 2022 – 2023 sở GD&ĐT Vĩnh Long : + Có 15 học sinh giỏi gồm 6 học sinh khối 12, 4 học sinh khối 11 và 5 học sinh khối 10. Hỏi có bao nhiêu cách chọn ra 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh? + Cho hình chóp tứ giác đều S.ABCD tâm O có cạnh đáy bằng a, cạnh bên hợp với mặt đáy một góc 60°. Gọi M là điểm đối xứng của C qua D, N là trung điểm SC. a) Tính khoảng cách từ O đến mặt phẳng (SAD). b) Mặt phẳng (BMN) chia khối chóp S.ABCD thành hai phần. Tính tỉ số thể tích giữa hai phần (phần lớn trên phần bé). + Trong mặt phẳng với hệ tọa độ Oxy, cho điểm M(-3;1) và đường tròn (C): x2 + y2 − 2x − 6y + 6 = 0. Gọi T1, T2 là các tiếp điểm của các tiếp tuyến kẻ từ M đến (C). Tính khoảng cách từ O đến đường thẳng T1T2.
Đề chọn HSG trường Toán 12 năm 2022 - 2023 trường chuyên Phan Bội Châu - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp trường môn Toán 12 năm học 2022 – 2023 trường THPT chuyên Phan Bội Châu, tỉnh Nghệ An; đề thi có đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm. Trích dẫn Đề chọn HSG trường Toán 12 năm 2022 – 2023 trường chuyên Phan Bội Châu – Nghệ An : + Có tám người ngồi quanh một bàn tròn. Mỗi người có một đồng xu đồng chất. Cả tám người cùng tung đồng xu của mình. Ai tung được mặt ngửa thì đứng dậy, còn ai tung được mặt sấp thì vẫn ngồi yên. Tính xác suất để không có hai người đứng cạnh nhau. + Cho hình chóp S ABC. Trên các cạnh SA SB SC lần lượt lấy các điểm D E F (khác S). Gọi M là điểm chung của ba mặt phẳng ABF BCD CAE. Đường thẳng SM lần lượt cắt các mặt phẳng (ABC) và (DEF) tại P và N. Chứng minh rằng 3 NP MP NS MS. + Cho hình lăng trụ ABC A B C có đáy là tam giác đều cạnh bằng 3 a cạnh bên bằng 2 a hình chiếu vuông góc của A’ lên mặt phẳng ABC thuộc cạnh AB và góc giữa mặt phẳng A ACC và đáy bằng arctan 2. a) Tính theo a thể tích khối lăng trụ ABC A B C. b) Gọi G là trọng tâm tam giác ABC. Tính sin của góc giữa đường thẳng AG’ và mặt phẳng.