Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề tỉ số lượng giác của góc nhọn, hệ thức về cạnh và góc trong tam giác vuông

Nội dung Chuyên đề tỉ số lượng giác của góc nhọn, hệ thức về cạnh và góc trong tam giác vuông Bản PDF - Nội dung bài viết Tài liệu "Chuyên đề tỉ số lượng giác của góc nhọn, hệ thức về cạnh và góc trong tam giác vuông" Tài liệu "Chuyên đề tỉ số lượng giác của góc nhọn, hệ thức về cạnh và góc trong tam giác vuông" Tài liệu này gồm 30 trang, đã được biên soạn bởi tác giả Toán Học Sơ Đồ, nhằm tổng hợp kiến thức quan trọng về tỉ số lượng giác của góc nhọn và hệ thức về cạnh và góc trong tam giác vuông. Được xem là công cụ hữu ích để hỗ trợ học sinh trong quá trình học tập môn Hình học 9 chương 1. A. KIẾN THỨC CẦN NHỚ Trong phần này, tài liệu tập trung vào việc giải thích các kiến thức cơ bản về tỉ số lượng giác, hệ thức về cạnh và góc trong tam giác vuông. B. CÁC DẠNG BÀI TẬP CƠ BẢN VÀ NÂNG CAO 1. Dạng 1: Các bài toán tính toán: Tài liệu sẽ hướng dẫn học sinh về cách giải các bài tập tính toán với các bước cụ thể như đặt độ dài cạnh, góc bằng ẩn và giải phương trình để tìm kết quả cuối cùng. 2. Dạng 2: Chứng minh đẳng thức, mệnh đề: Hướng dẫn cách biến đổi mệnh đề về dạng đẳng thức và chứng minh các vế bằng nhau thông qua việc sử dụng hệ thức lượng và kiến thức đã học. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ Phần này cung cấp các câu hỏi trắc nghiệm để học sinh tự kiểm tra kiến thức và kỹ năng của mình. D. HƯỚNG DẪN GIẢI Cuối cùng, tài liệu sẽ cung cấp hướng dẫn chi tiết cách giải các bài tập, giúp học sinh hiểu rõ hơn về cách áp dụng kiến thức vào thực hành.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề hệ phương trình bậc nhất hai ẩn
Tài liệu gồm 77 trang, hướng dẫn giải các dạng toán chuyên đề hệ phương trình bậc nhất hai ẩn, giúp học sinh học tốt chương trình Đại số 9 chương 3: Hệ hai phương trình bậc nhất hai ẩn. A. KIẾN THỨC TRỌNG TÂM B. CÁC DẠNG TOÁN VÀ PHƯƠNG PHÁP GIẢI I. PHƯƠNG PHÁP THẾ. + Dạng toán 1: Giải hệ phương trình bằng phương pháp thế. + Dạng toán 2: Giải hệ phương trình quy về hệ phương trình bậc nhất hai ẩn bằng phương pháp thế. + Dạng toán 3: Giải hệ phương trình bằng phương pháp đặt ẩn phụ. + Dạng toán 4. Tìm điều kiện của tham số để hệ phương trình có nghiệm thỏa mãn điều kiện cho trước. II. PHƯƠNG PHÁP CỘNG ĐẠI SỐ. + Dạng toán 1: Giải hệ phương trình bằng phương pháp cộng đại số. + Dạng toán 2: Giải hệ phương trình quy về hệ phương trình bậc nhất hai ẩn bằng phương pháp cộng đại số. + Dạng toán 3: Giải hệ phương trình bằng phương pháp đặt ẩn phụ. + Dạng toán 4: Tìm điều kiện của tham số để hệ phương trình có nghiệm thỏa mãn điều kiện cho trước. III. SỬ DỤNG PHƯƠNG PHÁP ĐẶT ẨN PHỤ. C. BÀI TẬP TRẮC NGHIỆM HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN D. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI
Chuyên đề hàm số bậc nhất và các bài toán liên quan
Tài liệu gồm 64 trang, tổng hợp kiến thức cần nhớ, phân dạng và hướng dẫn giải các dạng bài tập chuyên đề hàm số bậc nhất và các bài toán liên quan, giúp học sinh học tốt chương trình Đại số 9 chương 2. 1. NHẮC LẠI VÀ BỔ SUNG CÁC KHÁI NIỆM VỀ HÀM SỐ. + Dạng toán 1. Tìm điều kiện xác định của hàm số. + Dạng toán 2. Tính giá trị hàm số khi cho giá trị của ẩn. + Dạng toán 3. Xác định điểm thuộc (không thuộc) đồ thị hàm số. + Dạng toán 4. Sự đồng biến, nghịch biến của hàm số. 2. HÀM SỐ BẬC NHẤT VÀ ĐỒ THỊ HÀM SỐ BẬC NHẤT. + Dạng toán 1. Hàm số bậc nhất. Sự đồng biến và nghịch biến của hàm số bậc nhất. + Dạng toán 2. Đồ thị hàm số y = ax và hệ số góc của đường thẳng y = ax. + Dạng toán 3. Đồ thị hàm số y = ax + b (a khác 0). + Dạng toán 4. Hệ số góc của đường thẳng. Đường thẳng song song và đường thẳng cắt nhau. 3. TỔNG HỢP MỘT SỐ BÀI TOÁN LIÊN QUAN ĐẾN HÀM SỐ BẬC NHẤT TRONG CÁC ĐỀ TUYỂN SINH VÀO 10 MÔN TOÁN. 4. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI.
Bài giảng căn bậc hai, căn bậc ba - Nguyễn Tài Chung
Tài liệu gồm 37 trang, được biên soạn bởi thầy giáo Nguyễn Tài Chung, gồm tóm tắt lý thuyết và bài tập chọn lọc chuyên đề căn bậc hai, căn bậc ba, giúp học sinh học tốt chương trình Toán 9. 1 Căn bậc hai. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. 2 Căn bậc hai và đẳng thức √A2 = |A|. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. 3 Liên hệ giữa phép nhân và phép khai phương. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. 4 Liên hệ giữa phép chia và phép khai phương. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. [ads] 5 Bảng căn bậc hai. A Tóm tắt lý thuyết. B Bài tập. 6 Biến đổi đơn giản biểu thức chứa căn bậc hai. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. 7 Rút gọn biểu thức chứa căn bậc hai. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. 8 Căn bậc ba. A Tóm tắt lý thuyết. B Bài tập. C Lời giải. Ôn tập chương I. A Đề bài. B Lời giải.
Chuyên đề căn bậc hai và căn bậc ba - Bùi Đức Phương
Tài liệu gồm 40 trang, được biên soạn bởi thầy giáo Bùi Đức Phương, tổng hợp kiến thức và hướng dẫn phương pháp giải một số dạng toán quan trọng thuộc các chủ đề: căn bậc hai và căn bậc ba, trong chương trình môn Toán lớp 9. Bài 1 . Căn bậc hai. Dạng 1 . Tìm căn bậc hai của một số. Phương pháp giải: bám sát vào định nghĩa và tính chất của căn bậc hai. Dạng 2 . So sánh biểu thức không sử dụng máy tính. Phương pháp giải: sử dụng các tính chất của căn bậc hai. Dạng 3 . Biểu diễn hình học căn thức sử dụng thước kẻ và compa. Phương pháp giải: sử dụng các tính chất về dựng hình, đặc biệt là dựng hình vuông, tam giác vuông cho biết độ dài. Bài 2 . Căn thức bậc hai. Dạng 4 . Tìm điều kiện xác định của căn bậc hai. Phương pháp giải: + Một biểu thức a = √f(x) xác định (hay có nghĩa) khi và chỉ khi f(x) ≥ 0. + Một biểu thức b = 1/√f(x) xác định (hay có nghĩa) khi và chỉ khi f(x) > 0. Dạng 5 . Rút gọn các căn thức đơn giản. Phương pháp giải: sử dụng các tính chất của căn bậc hai. [ads] Bài 3 . Liên hệ giữa phép nhân, phép chia & phép khai phương. Dạng 6 . Áp dụng phép nhân, phép chia, phép khai phương để tính giá trị biểu thức. Phương pháp giải: sử dụng các tính chất phép nhân, phép chia, phép khai phương để tính giá trị biểu thức. Bài 4 . Biến đổi biểu thức chứa căn thức bậc hai. Dạng 7 . Các dạng bài tập biến đổi cơ bản biểu thức chứa căn thức bậc hai. Phương pháp giải: sử dụng các tính chất phép nhân, phép chia, phép khai phương để tính giá trị biểu thức. Dạng 8 . Biến đổi biểu thức chứa căn bậc hai. Phương pháp giải: sử dụng các tính chất phép nhân, phép chia, phép khai phương để tính giá trị biểu thức. Bài 5 . Căn bậc ba. Dạng 9 . Các dạng bài tập liên quan căn bậc ba. Phương pháp giải: áp dụng định nghĩa và các tính chất của căn bậc ba. Ôn tập chương I