Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào năm 2023 phòng GD ĐT Sơn Động Bắc Giang

Nội dung Đề thi thử Toán vào năm 2023 phòng GD ĐT Sơn Động Bắc Giang Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2023 phòng GD ĐT Sơn Động Bắc Giang Đề thi thử Toán vào năm 2023 phòng GD ĐT Sơn Động Bắc Giang Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 Trung học Phổ thông năm 2023 của phòng Giáo dục và Đào tạo huyện Sơn Động, tỉnh Bắc Giang. Đề thi bao gồm 30% câu hỏi trắc nghiệm và 70% câu hỏi tự luận, thời gian làm bài 120 phút, không tính thời gian nhận đề. Đề thi đi kèm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Kỳ thi sẽ diễn ra vào ngày thứ Ba, 18 tháng 04 năm 2023. Một công ty sản xuất hàng may mặc phục vụ xuất khẩu cần may 2100 chiếc áo trong một khoảng thời gian nhất định. Để đáp ứng nhanh hơn, họ đã may nhiều hơn 35 áo mỗi ngày. Nhờ vậy, công việc được hoàn thành sớm hơn 3 ngày. Câu hỏi đặt ra là mỗi ngày công ty cần may bao nhiêu chiếc áo? Đề bài tiếp theo yêu cầu chứng minh một số tính chất của tam giác nội tiếp trong đường tròn và của các đường cao, đường trung tuyến của nó. Cần chứng minh rằng các điểm trên đường tròn ngoại tiếp tứ giác nội tiếp là một chuỗi liên tục. Cuối cùng, cần tính tích AK AH trong một đường tròn cho trước. Đề thi này sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi tuyển sinh vào lớp 10. Hy vọng các em sẽ vượt qua thách thức và đạt kết quả tốt trong kỳ thi sắp tới. Chúc các em học tốt và thành công!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên KHTN - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên KHTN, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi CLB Toán A1: Nguyễn Nhất Huy – Trần Nguyễn Đức Nhật – Phan Anh Quân – Trịnh Huy Vũ). Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 trường THPT chuyên KHTN – Hà Nội : + Giả sử n là số nguyên sao cho 3n3 – 1011 chia hết cho 1008. Chứng minh rằng n – 1 chia hết cho 48. + Cho hai đường tròn (O) và (O’) cố định cắt nhau tại A và B sao cho O nằm ngoài (O’) và O’ nằm ngoài (O). Trên đường tròn (O) lấy điểm P di chuyển sao cho P nằm trong đường tròn (O’). Đường thẳng AP cắt (O’) tại C khác A. 1) Chứng minh rằng hai tam giác OBP và O’BC đồng dạng. 2) Gọi Q là giao điểm của hai đường thẳng OP và O’C. Chứng minh rằng QBC + ABP = 90°. 3) Lấy điểm D thuộc (O) sao cho AD vuông góc O’C. Chứng minh rằng trung điểm của đoạn thẳng DQ luôn nằm trên một đường tròn cố định khi P thay đổi. + Giả sử A là tập hợp con của tập hợp gồm 30 số tự nhiên đầu tiên {0, 1, 2, 3, …, 29} sao cho với k nguyên bất kỳ, a, b thuộc A bất kỳ (có thể a = b) thì a + b + 30k không là tích của hai số nguyên liên tiếp. Chứng minh rằng số phần tử của tập hợp A nhỏ hơn hoặc bằng 10.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 trường chuyên Quốc học Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên Toán và chuyên Tin học) năm học 2023 – 2024 trường THPT chuyên Quốc học Huế, tỉnh Thừa Thiên Huế; kỳ thi được diễn ra vào 04/06/2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 trường chuyên Quốc học Huế : + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O), có đường cao AD và trực tâm H. Gọi E là điểm trên (O) sao cho hai dây AE và BC song song với nhau. Đường thẳng EH cắt (O) tại điểm thứ hai là F và cắt đường trung trực của BC tại M. a) Chứng minh M là trung điểm của EH và AMOF là tứ giác nội tiếp. b) Chứng minh OFA + ODF = 180. c) Gọi K là điểm đối xứng với A qua O. Tiếp tuyến của (O) tại A cắt đường thẳng FK tại T. Chứng minh hai đường thẳng TH và BC song song với nhau. + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = (m – 2)x + 3 và parabol (P): y = x2. Chứng minh với mọi m, (d) luôn cắt (P) tại hai điểm phân biệt A và B nằm khác phía đối với trục tung. Gọi C và D lần lượt là hình chiếu vuông góc của A và B trên trục hoành. Tìm tất cả các giá trị của m để hai tam giác AOC và BOD có diện tích bằng nhau. + Trong một đường tròn (O) có bán kính bằng 46 cm, cho 2023 điểm bất kỳ. Chứng minh tồn tại vô số hình tròn có bán kính bằng 1 cm nằm trong đường tròn (O) và không chứa bất kỳ điểm nào trong 2023 điểm đã cho.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT An Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh An Giang; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT An Giang : + Hình vẽ bên là đồ thị của hai hàm số f(x) = ax2 và g(x) = -ax + b (a; b là các số thực), điểm chung thứ nhất có hoành độ bằng 1. Tìm hoành độ của điểm chung thứ hai của hai đồ thị. + Cho tam giác ABC có ba góc đều nhọn, BH là đường cao kẻ từ B (H thuộc AC). Gọi D, E lần lượt là trung điểm của AB và AC, F là điểm đối xứng của điểm H qua DE. a. Chứng minh rằng tứ giác ABFH nội tiếp. b. Chứng minh FBA = EFH. c. Chứng minh rằng BF đi qua tâm đường tròn ngoại tiếp tam giác ABC. + Một nhà máy sản xuất ống thép, khi xuất xưởng các ống thép được bó lại tạo thành khối gồm 37 ống như hình vẽ. Biết các ống có dạng hình trụ đường kính đáy bằng nhau và bằng 10cm. Tính độ dài của một sợi dây đai để buột các ống thép lại với nhau.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Yên Bái
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Yên Bái; kỳ thi được diễn ra vào ngày 02 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Yên Bái : + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = 2x – m – 2. Tìm tất cả các giá trị của tham số m để (d) cắt (P) tại hai điểm phân biệt lần lượt có hoành độ x1, x2 thỏa mãn x12 + 1 = 2×2. + Cho tam giác ABC nhọn nội tiếp đường tròn tâm O, các đường cao AD, BE, CF (D thuộc BC, E thuộc CA, F thuộc AB). Tiếp tuyến tại A của đường tròn (O) cắt DF tại M, MC cắt (O) tại I khác C, IB cắt MD tại N. a) Chứng minh rằng MA // EF. b) Chứng minh rằng MAF cân, tứ giác AINF nội tiếp. c) Chứng minh rằng MA2 = MN.MD. d) Gọi K là giao điểm của CF và đường tròn (O). Chứng minh rằng A, N, K thẳng hàng. + Cho một đa giác đều có 23 đỉnh. Tô màu các đỉnh của đa giác bằng một trong hai màu xanh hoặc đỏ. Chứng minh rằng luôn tồn tại ba đỉnh của đa giác được tô cùng màu và tạo thành một tam giác cân.