Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Olympic Toán 8 năm 2018 - 2019 phòng GDĐT TX Thái Hòa - Nghệ An

THCS. giới thiệu đến các em học sinh lớp 8 đề Olympic Toán 8 năm 2018 – 2019 phòng GD&ĐT TX Thái Hòa – Nghệ An, nhằm giao lưu và tuyển chọn các em học sinh giỏi Toán 8 đang học tập tại các trường THCS trên địa bàn Thị xã Thái Hòa, tỉnh Nghệ An. Đề Olympic Toán 8 năm 2018 – 2019 phòng GD&ĐT TX Thái Hòa – Nghệ An được biên soạn theo hình thức tự luận với 05 bài toán, học sinh làm bài trong 90 phút. Trích dẫn đề Olympic Toán 8 năm 2018 – 2019 phòng GD&ĐT TX Thái Hòa – Nghệ An : + Cho tam giác ABC vuông tại A, có trung tuyến AM, đường cao AH. Trên cùng nửa mặt phẳng bờ BC kẻ hai tia Ax và Cy cùng vuông góc với BC. Qua A kẻ đường thẳng vuông góc với AM cắt Bx và Cy lần lượt tại P và Q. Chứng minh: a) AP = BP và AQ = CQ. b) PC đi qua trung điểm I của AH. c) Khi BC cố định, BC = 2a, điểm A chuyển động sao cho BAC = 90°. Tìm vị trí điểm H trên đoạn thẳng BC để diện tích tam giác ABH đạt giá trị lớn nhất, tìm giá trị lớn nhất đó. [ads] + Cho phân thức: P = (n^3 + 2n^2 – 1)/(n^3 + 2n^2 + 2n + 1). a) Hãy tình điều kiện xác định và rút gọn phân thức trên. b) Chứng minh rằng nếu n là một số nguyên thì giá trị phân thức tìm được trong câu a luôn là một phân số tối giản. + Tìm đa thức f(x) biết: f(x) chia cho x – 2 dư 5; f(x) chia cho x – 3 dư 7; f(x) chia cho (x – 2)(x – 3) được thương là x^2 -1 và đa thức dư là đa thức bậc nhất đối với x.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Can Lộc - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi giao lưu học sinh giỏi cấp trường môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Can Lộc, tỉnh Hà Tĩnh; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Can Lộc – Hà Tĩnh : + Có 8 đội bóng được vào chung kết giải bóng chuyền học sinh THCS của huyện Can Lộc năm 2023. Hỏi nếu tổ chức thi đấu vòng tròn một lượt (2 đội bất kỳ chỉ gặp nhau 1 trận) để tính điểm thì có tất cả bao nhiêu trận đấu? + Cho tam giác ABC có M là trung điểm của AC. AD, BM, CE đồng quy tại K (D thuộc BC, E thuộc AB và K nằm trong tam giác ABC). Biết diện tích tam giác AKE bằng 10 2 cm, diện tích tam giác BKE bằng 20 2 cm. Tính diện tích tam giác ABC. + Cho điểm O nằm trong tam giác ABC, các tia AO, BO, CO cắt các cạnh BC, CA, AB của tam giác theo thứ tự tại D, E, F. Tìm vị trí điểm O để OA OB OC P OD OE OF có giá trị nhỏ nhất, tìm giá trị nhỏ nhất đó?
Đề giao lưu HSG Toán 8 năm 2022 - 2023 phòng GDĐT Vĩnh Bảo - Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Vĩnh Bảo, thành phố Hải Phòng; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 8 năm 2022 – 2023 phòng GD&ĐT Vĩnh Bảo – Hải Phòng : + Cho hình chữ nhật ABCD. Vẽ BH vuông góc với AC (H AC). Gọi M là trung điểm của AH, K là trung điểm của CD. Chứng minh rằng: BM ⊥ MK. + Cho tam giác ABC nhọn AB < AC, ba đường cao AD, BE, CF của tam giác ABC cắt nhau tại H. a/ Chứng minh:Tam giác AEF đồng dạng với tam giác ABC và FC là tia phân giác của góc EFD. b/ Hai đường thẳng EF và CB cắt nhau tại M. Từ B kẻ đường thẳng song song với AC cắt AM tại I; cắt AD tại K. Chứng minh rằng: B là trung điểm của IK. + Cho 2023 số tự nhiên bất kỳ: a1; a2; …; a2023. Chứng minh rằng tồn tại một số hoặc tổng một số các số trong dãy trên chia hết cho 2023.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Hà Đông - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo quận Hà Đông, thành phố Hà Nội. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Hà Đông – Hà Nội : + Chứng minh rằng trong hai số a và b có đúng một số chia hết cho 5. + Cho hình vuông ABCD, gọi M và N theo thứ tự là trung điểm của AB và BC. Các đường thẳng DN và CM cắt nhau tại E. 1) Chứng minh rằng: CE.MB = CB.EN. 2) Chứng minh rằng: AE = DC. 3) Tính tỉ số. + Cho 2023 điểm trên mặt phẳng. Biết rằng cứ 3 điểm bất kì trong số 2023 điểm nói trên bao giờ cũng có hai điểm mà khoảng cách giữa chúng nhỏ hơn 2cm. Chứng minh rằng có ít nhất có 1012 điểm trong số 2023 điểm nói trên nằm trong một đường tròn có bán kính bằng 3cm.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT thành phố Vinh - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi khảo sát chất lượng học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT thành phố Vinh – Nghệ An : + Cho các số nguyên abc thoả mãn ab bc ca 1. Chứng minh rằng 2 2 2 A a b c là số chính phương. Gọi S n là tổng các chữ số của số nguyên dương n khi biểu diễn nó trong hệ thập phân. Biết rằng với bất kỳ số nguyên dương n ta có 0 S n n. Tìm số nguyên dương n thỏa mãn 2 S n n 2023 7. + Tìm các hệ số abc để đa thức 3 2 f x x ax bx c chia hết cho đa thức x 2 và chia cho đa thức 2 x 1 thì dư 3. Cho a b c d e là các số thực dương thỏa mãn a b c d e 4. Tìm giá trị nhỏ nhất của biểu thức a b c d a b c a b P abcde. + Cho tam giác ABC có ba góc nhọn AB AC trung tuyến AM. Kẻ BE vuông góc với AM. Trên đoạn MC lấy điểm F sao cho MFA MEC. Gọi N I lần lượt là trung điểm của đoạn thẳng AF EC AF cắt CE ở O. Chứng minh rằng OEF đồng dạng với OAC. Biết tỷ số 1 2 AM BC tính tỷ số MN MI. Chứng minh rằng NB NC. Cho hình thang cân ABCD AB CD. Gọi M N lần lượt là trung điểm của AB và CD. Trên tia đối của tia DA lấy điểm E, tia EN cắt đoạn thẳng AC tại F. Chứng minh rằng MN là tia phân giác của góc EMF.