Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tổng hợp kiến thức môn Toán phần Đại số

Nội dung Tổng hợp kiến thức môn Toán phần Đại số Bản PDF - Nội dung bài viết Tổng hợp kiến thức môn Toán phần Đại số Tổng hợp kiến thức môn Toán phần Đại số Tài liệu này được biên soạn bởi quý thầy, cô giáo Nhóm Toán Tiểu Học – THCS – THPT Việt Nam, bao gồm 32 trang để tổng hợp kiến thức môn Toán lớp 9 phần Đại số. Đây là tài liệu hữu ích giúp học sinh lớp 9 tra cứu nhanh khi học chương trình Đại số 9 và ôn thi vào lớp 10 môn Toán. 1. CĂN BẬC HAI – CĂN BẬC BA: Tài liệu cung cấp kiến thức về căn bậc hai và căn bậc ba, điều kiện để biểu thức xác định, liên hệ giữa phép khai căn, nhân, chia, cũng như cách đưa thừa số vào trong hoặc ra ngoài căn. 2. HÀM SỐ BẬC NHẤT – BẬC HAI: Nội dung bao gồm về điều kiện để hàm số là hàm số bậc nhất, hàm số đồng biến, nghịch biến, hệ số góc của đường thẳng, cách vẽ đồ thị hàm số bậc nhất và nhiều kiến thức khác liên quan đến hàm số. 3. ĐỒ THỊ HÀM SỐ: Tài liệu này trình bày về tính chất của đồ thị hàm số, điểm thuộc đồ thị, và vị trí tương đối giữa đường thẳng và Parabol trên mặt phẳng. 4. GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH HOẶC HỆ PHƯƠNG TRÌNH: Tài liệu này hướng dẫn cách giải bài toán bằng cách lập phương trình hoặc hệ phương trình, với nhiều dạng toán phổ biến. 5. HỆ PHƯƠNG TRÌNH: Bao gồm kiến thức về kiểm tra nghiệm, tìm nghiệm tổng quát, giải hệ phương trình bằng các phương pháp khác nhau và nhiều kiến thức khác về hệ phương trình. 6. HỆ PHƯƠNG TRÌNH ĐỐI XỨNG LOẠI I, II: Tài liệu này chứa thông tin về hệ phương trình đối xứng loại I và II. 7. HỆ ĐẲNG CẤP BẬC HAI: Cung cấp kiến thức về hệ đẳng cấp bậc hai và cách giải. 8-11. PHƯƠNG TRÌNH BẬC HAI, BẬC BA, BẬC BỐN: Bao gồm các phương trình bậc hai, bậc ba, bậc bốn và cách giải chúng. Tài liệu này là nguồn thông tin quý báu giúp học sinh làm quen và nắm vững kiến thức về Đại số, từ đó củng cố kỹ năng và chuẩn bị tốt cho kỳ thi môn Toán. Chúc các em học tốt!

Nguồn: sytu.vn

Đọc Sách

Chuyên đề hình cầu, diện tích mặt cầu và thể tích hình cầu
Tài liệu gồm 52 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề hình cầu, diện tích mặt cầu và thể tích hình cầu, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 4 bài số 3. A. TRỌNG TÂM CƠ BẢN CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Hình cầu. + Khi quay nửa hình tròn tâm O, bán kính R một vòng quanh đường kính AB cố định ta thu được một hình cầu. + Nửa đường tròn trong phép quay nói trên tạo thành một mặt cầu. + Điểm O gọi là tâm, R là bán kính của hình cầu hay mặt cầu đó. 2. Cắt hình cầu bởi một mặt phẳng. + Khi cắt hình cầu bởi một mặt phẳng ta được một hình tròn. + Khi cắt mặt cầu bán kính R bởi một mặt phẳng ta được một đường tròn, trong đó: đường tròn đó có bán kính R nếu mặt phẳng đi qua tâm (gọi là đường tròn lớn). 3. Diện tích, thể tích. Cho hình cầu bán kính R: + Diện tích mặt cầu: S = 4piR^2. + Thể tích hình cầu: V = 4/3piR^3. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Tính diện tích mặt cầu, thể tích hình cầu và các đại lượng liên quan. Phương pháp giải: Áp dụng các công thức S = 4piR^2 và V = 4/3piR^3 để tính diện tích mặt cầu, thể tích hình cầu và các đại lượng liên quan. Dạng 2. Bài tập tổng hợp. Phương pháp giải: Vận dụng các công thức trên và các kiến thức đã học để tính các đại lượng chưa biết rồi từ đó tính diện tích mặt cầu, thể tích hình cầu. III. BÀI TẬP CƠ BẢN VỀ NHÀ B. NÂNG CAO VÀ PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO
Chuyên đề hình trụ, diện tích xung quanh và thể tích của hình trụ
Tài liệu gồm 26 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề hình trụ, diện tích xung quanh và thể tích của hình trụ, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 1. A. TRỌNG TÂM CƠ BẢN CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT Cho hình trụ có bán kính đáy R và chiều cao h. Khi đó: 1. Diện tích xung quanh: Sxq = 2piRh. 2. Diện tích đáy: S = piR^2. 3. Diện tích toàn phần: Stp = 2piRh + 2piR^2. 4. Thể tích: V = piR^2h. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Tính bán kính đáy, chiều cao, diện tích xung quanh, diện tích toàn phần và thể tích của hình trụ. Phương pháp giải: Vận dụng các công thức trên để tính bán kính đáy, chiều cao, diện tích đáy, diện tích xung quanh, diện tích toàn phần và thể tích của hình trụ. Dạng 2. Bài tập tổng hợp. Phương pháp giải: Vận dụng một cách linh hoạt kiến thức về hình học phẳng đã được học kết hợp các công thức và lí thuyết về hình trụ kết hợp giải bài tập. III. BÀI TẬP CƠ BẢN VỀ NHÀ B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO
Chuyên đề diện tích hình tròn, hình quạt tròn
Tài liệu gồm 28 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề diện tích hình tròn, hình quạt tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 10. A. TRỌNG TÂM CƠ BẢN CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Công thức diện tích hình tròn: Diện tích S của một hình tròn bán kinh R được tính theo công thức: S = pi.R^2. 2. Công thức diện tích hình quạt tròn: Diện tích hình quạt tròn bán kính E, cung n0 được tính theo công thức: S = piR^2n/360 hay S = lR/2 (l là độ dài cung n0 của hình quạt tròn). II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Tính diện tích hình tròn, hình quạt tròn và các loại lương có liên quan. Phương pháp giải: Áp dụng các công thức trên và các kiến thức đã có. Dạng 2. Bài toán tổng hợp. Phương pháp giải: Sử dụng linh hoạt các kiến thức đã học để tính góc ở tâm, bán kính đường tròn. Từ đó tính được diện tích hình tròn và diện tích hình quạt tròn. III. BÀI TẬP CƠ BẢN VỀ NHÀ B. NÂNG CAO VÀ PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO
Chuyên đề độ dài đường tròn, cung tròn
Tài liệu gồm 29 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề độ dài đường tròn, cung tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 9. A. TRỌNG TÂM CƠ BẢN CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Công thức tính độ dài đường tròn (chu vi đường tròn). Độ dài (C) của một đường tròn bán kính R được tính theo công thức: C = 2piR hoặc C = pid (với d = 2R). 2. Công thức tính độ dài cung tròn. Trên đường tròn bán kính R, độ dài l của một cung n° được tính theo công thức: l = piRn/180. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Tính độ dài đường tròn, cung tròn. Phương pháp giải: Áp dụng công thức đã nêu trong phần tóm tắt lý thuyết. Dạng 2. Một số bài toán tổng hợp. Phương pháp giải: Áp dụng công thức trên và các kiến thức đã có. III. BÀI TẬP CƠ BẢN VỀ NHÀ B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO