Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Mở đầu hình học giải tích không gian Oxyz

Ebook Mở đầu hình học giải tích không gian Oxyz gồm 411 trang, được biên soạn bởi thầy giáo Huỳnh Kim Linh và nhóm tác giả Chinh phục Olympic Toán, mang tới cho bạn đọc cái nhìn khái quát và cơ bản nhất về chủ đề hình học Giải tích không gian Oxyz, thông qua các lý thuyết cơ bản và ví dụ minh họa kèm lời giải chi tiết. Tài liệu giúp các em học sinh lớp 12 học tốt chương trình Hình học 12 chương 3: phương pháp tọa độ trong không gian và ôn thi tốt nghiệp THPT môn Toán. Chương 1 . Mở đầu hình học tọa độ không gian. + Dạng 1. Tìm tọa độ của vectơ, của điểm. + Dạng 2. Tích vô hướng của hai vectơ và ứng dụng. + Dạng 3. Vận dụng công thức trung điểm và trọng tâm. + Dạng 4. Chứng minh hai vectơ cùng phương, không cùng phương. + Dạng 5. Tích có hướng của hai vectơ và ứng dụng. Chương 2 . Lý thuyết về phương trình đường thẳng. + Dạng 1. Viết phương trình đường thẳng đi qua hai điểm phân biệt. + Dạng 2. Đường thẳng Δ đi qua điểm M và song song với đường thẳng d. + Dạng 3. Viết phương trình đường thẳng Δ đi qua điểm M và vuông góc với mặt phẳng (α). + Dạng 4. Viết phương trình đường thẳng Δ đi qua điểm M và vuông góc với hai đường thẳng d1, d2 không cùng phương. + Dạng 5. Viết phương trình đường thẳng Δ  đi qua điểm M vuông góc với đường thẳng d và song song với mặt phẳng (α). + Dạng 6. Viết phương trình đường thẳng Δ đi qua điểm A và song song với hai mặt phẳng cắt nhau (α), (β). + Dạng 7. Viết phương trình đường thẳng Δ là giao tuyến của hai mặt phẳng (α) và (β). + Dạng 8. Viết phương trình đường thẳng Δ đi qua điểm A và cắt hai đường thẳng d1, d2 không chứa A. + Dạng 9. Viết phương trình đường thẳng Δ nằm trong mặt phẳng (α) và cắt hai đường thẳng d1, d2. + Dạng 10. Viết phương trình đường thẳng Δ đi qua điểm A, vuông góc và cắt d. + Dạng 11. Viết phương trình đường thẳng Δ đi qua điểm A, vuông góc với d1 và cắt d2, với A không thuộc d2. + Dạng 12. Viết phương trình đường thẳng Δ đi qua điểm A, cắt đường thẳng d và song song với mặt phẳng (α). + Dạng 13. Viết phương trình đường thẳng Δ nằm trong mặt phẳng (α) cắt và vuông góc đường thẳng d. + Dạng 14. Viết phương trình đường thẳng Δ đi qua giao điểm A của đường thẳng d và mặt phẳng (α), nằm trong (α) và vuông góc đường thẳng d (d không vuông góc với (α)). + Dạng 15. Viết phương trình đường thẳng Δ là đường vuông góc chung của hai đường thẳng chéo nhau d1, d2. + Dạng 16. Viết phương trình đường thẳng Δ song song với đường thẳng d và cắt cả hai đường thẳng d1, d2. + Dạng 17. Viết phương trình đường thẳng Δ vuông góc với mặt phẳng (α) và cắt cả hai đường thẳng d1, d2. + Dạng 18. Viết phương trình Δ là hình chiếu vuông góc của d lên mặt phẳng (α). + Dạng 19. Viết phương trình Δ là hình chiếu song song của d lên mặt phẳng (α) theo phương d’. [ads] Chương 3 . Các bài toán về phương trình mặt phẳng. + Dạng 1. Viết phương trình mặt phẳng khi biết một điểm và vectơ pháp tuyến của nó. + Dạng 2. Viết phương trình mặt phẳng đi qua một điểm và song song với một mặt phẳng. + Dạng 3. Viết phương trình mặt phẳng đi qua ba điểm không thẳng hàng. + Dạng 4. Viết phương trình mặt phẳng (α) đi qua điểm M và vuông góc với đường thẳng d. + Dạng 5. Viết phương trình mặt phẳng (α) chứa đường thẳng Δ, vuông góc với mặt phẳng (β). + Dạng 6. Viết phương trình mặt phẳng (α) qua hai điểm A, B và vuông góc với mặt phẳng (β). + Dạng 7. Viết phương trình mặt phẳng (α) chứa đường thẳng Δ và song song với Δ’ (Δ và Δ’ chéo nhau). + Dạng 8. Viết phương trình mặt phẳng (α) chứa đường thẳng Δ và điểm M. + Dạng 9. Viết phương trình mặt phẳng chứa hai đường thẳng cắt nhau. + Dạng 10. Viết phương trình mặt phẳng chứa hai đường thẳng song song. + Dạng 11. Viết phương trình mặt phẳng đi qua một điểm và song song với hai đường thẳng chéo nhau. + Dạng 12. Viết phương trình mặt phẳng đi qua một điểm và vuông góc với hai mặt phẳng cho trước. + Dạng 13. Viết phương trình mặt phẳng (α) song song với mặt phẳng (β) và cách (β) một khoảng k. + Dạng 14. Viết phương trình mặt phẳng (α) song song với mặt phẳng (β) và cách điểm M một khoảng k. + Dạng 15. Viết phương trình mặt phẳng tiếp xúc với mặt cầu. Chương 4 . Các bài toán về phương trình mặt cầu. + Dạng 1. Tìm tâm và bán kính mặt cầu. + Dạng 2. Viết phương trình mặt cầu. + Dạng 3. Sự tương giao và tiếp xúc. Chương 5 . Các bài toán cực trị trong hình học không gian Oxyz. + Dạng 1. Cho hai điểm A, B, mặt phẳng (P) và đường thẳng d. Tìm tọa độ điểm M thuộc (P) sao cho chu vi tam giác MAB nhỏ nhất. Tìm tọa độ điểm M thuộc d sao cho chu vi tam giác MAB nhỏ nhất. + Dạng 2. Cho hai điểm A, B và đường thẳng (d). Tìm trên (d) điểm M để: MA^2 + MB^2 đạt giá trị nhỏ nhất; |MA + MB| đạt giá trị nhỏ nhất; tam giác MAB có diện tích nhỏ nhất. + Dạng 3. Cho điểm A và đường thẳng (d). Viết phương trình mặt phẳng (Q) chứa (d) có d(A;(Q)) lớn nhất, nhỏ nhất. + Dạng 4. Cho hai đường thẳng d và d’. Viết phương trình mặt phẳng (P) chứa d và tạo với đường thẳng d’ một góc lớn nhất. + Dạng 5. Cho hai điểm A, B và đường thẳng d. Viết phương trình đường thẳng Δ đi qua A, cắt d và cách điểm B một khoảng lớn nhất. + Dạng 6. Cho hai điểm A, B và đường thẳng d. Viết phương trình đường thẳng Δ đi qua A, cắt d và cách điểm B một khoảng nhỏ nhất. + Dạng 7. Tìm M sao cho P = a1MA1^2 + . . . + anMAn^2 nhỏ nhất / lớn nhất. + Dạng 8. Cho mặt cầu (S) và mặt phẳng (α). Tìm điểm M trên mặt cầu sao cho khoảng cách từ nó đến mặt cầu đạt giá trị lớn nhất hoặc giá trị nhỏ nhất. + Dạng 9. Cho mặt cầu (S) và đường thẳng (d). Tìm điểm M trên mặt cầu (S) sao cho khoảng cách từ nó đến đường thẳng d đạt giá trị lớn nhất hoặc đạt giá trị nhỏ nhất? Chương 6 . Phương pháp tọa độ hóa hình cổ điển.

Nguồn: toanmath.com

Đọc Sách

Các bài toán chọn lọc trong hệ tọa độ Oxyz (phần 2) - Nguyễn Xuân Chung
Tài liệu gồm 99 trang, được biên soạn bởi thầy giáo Nguyễn Xuân Chung, tuyển chọn và hướng dẫn phương pháp giải các bài toán chọn lọc trong hệ tọa độ Oxyz (phần 2), giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian. PHẦN 2 : CÁC BÀI TOÁN TẬP HỢP ĐIỂM; GTLN – GTNN. Trong phần 2 này chúng ta nghiên cứu các bài toán có nội dung về quỹ tích và giá trị lớn nhất, giá trị nhỏ nhất. Thông thường: Các bài toán tập hợp điểm cũng chính là các bài toán về min – max bởi vì khi tập hợp điểm thỏa mãn điều kiện nhất định thì sẽ đạt min – max. Tuy nhiên: Bài toán tập hợp điểm thiên về vị trí tương đối và tính toán, còn bài toán về min – max thiên về khảo sát hàm số và bất đẳng thức. Từ đó chúng ta cũng thấy được phương pháp giải có đặc trưng riêng. + Bài toán tập hợp điểm: Thường sử dụng phương pháp véc tơ, các định lý trong tam giác, hình bình hành, sự đối xứng, song song, vuông góc. + Bài toán min – max: Thường sử dụng phương pháp khử dần ẩn (Thêm biến, đổi biến, dồn biến), khảo sát cực trị, bất đẳng thức B.C.S, Mincopxki. Như vậy trong phần này các bài toán có mức độ Vận dụng – Vận dụng cao. Để giải nhanh thì chúng ta không chỉ nắm vững kiến thức mà còn sử dụng một số công thức tính nhanh, kỹ năng sử dụng CASIO. Nếu chỉ làm tự luận thì cũng có kết quả nhưng thi trắc nghiệm thì thời gian không nhiều!. Các em cần tính tổng thời gian của quy trình giải một bài toán khó như sau: + Đọc hiểu đề và yêu cầu của bài toán: Đọc để hiểu nội dung của bài toán là gì? + Tái hiện kiến thức: Trong bài toán chúng ta cần thiết những kiến thức nào? + Xác định các yếu tố cần giải: Chẳng hạn mặt cầu thì cần biết tâm, bán kính. + Biến đổi, tính toán: Đây là quy trình cuối cùng dẫn đến kết quả và trả lời, có nhiều khi phải vẽ hình minh họa thì càng mất nhiều thời gian. Trong phần này, các bài toán có chọn lọc và được biên soạn theo chủ đề: Điểm – mặt phẳng, Điểm – Mặt cầu, Điểm – Đường thẳng, và tổ hợp của các yếu tố trên. Trong phần 1, tôi đã đưa ra một số kiến thức bổ xung và công thức tính nhanh, nên phần này tôi không nêu ra. Tuy nhiên, trong phần này cũng có kiến thức bổ xung hữu ích để giúp chúng ta giải nhanh, từ đó mới tiết kiệm được thời gian toàn bài thi. Đặc biệt trong phần này ta nghiên cứu bài toán mà tạm gọi là “Định luật phản xạ ánh sáng đối với gương phẳng”. I. BỔ XUNG ‐ BÀI TOÁN VỀ TÂM TỈ CỰ. II. BÀI TOÁN VỀ TỔ HỢP VÉC TƠ. III. BÀI TOÁN VỀ QUỸ TÍCH – VỊ TRÍ TƯƠNG ĐỐI. IV. BÀI TOÁN VỀ TỔNG – HIỆU KHOẢNG CÁCH. V. BÀI TOÁN TỔNG HỢP CUỐI PHẦN 2. VI. PHỤ LỤC.
Các bài toán chọn lọc trong hệ tọa độ Oxyz (phần 1) - Nguyễn Xuân Chung
Tài liệu gồm 112 trang, được biên soạn bởi thầy giáo Nguyễn Xuân Chung, tuyển chọn và hướng dẫn phương pháp giải các bài toán chọn lọc trong hệ tọa độ Oxyz (phần 1), giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian. PHẦN 1 : KIẾN THỨC CƠ BẢN VÀ BỔ XUNG. CÔNG THỨC TÍNH NHANH. Trong phần này chúng ta nghiên cứu các bài toán điển hình trong hệ tọa độ Oxyz chỉ thiên về tính toán: Nghĩa là từ các số liệu và dữ kiện đã cho, chúng ta đi thiết lập các phương trình hay các hệ thức có liên quan và giải ra đáp số cần tìm. Phần này là các bài toán sưu tầm được chọn lọc và có tính tổng hợp, nghĩa là tổ hợp của nhiều bài toán nhỏ, bao gồm nhiều kiến thức có liên quan. Nói cách khác: Đây là các bài toán để ôn tập và luyện thi. Chúng ta có thể phân dạng, loại toán theo nhiều cách hay theo các hình thức nào đó, một bài toán có thể được nằm trong nhiều dạng toán khác nhau, do đó không thể định dạng chung cho tất cả các bài toán. Trong phần này tôi cố gắng biên soạn các bài toán theo các chủ đề, hay theo phương pháp giải hoặc theo dạng toán đặc trưng của nó. Để đáp ứng ôn tập và luyện thi, đặc biệt là thi trắc nghiệm, thì ngoài các kiến thức cơ bản và cách giải tự luận, yêu cầu các em cần bổ xung thêm các kiến thức, một số kết quả hay một số công thức tính nhanh, kết hợp với máy tính CASIO. I. CÁC BÀI TOÁN CƠ BẢN VỀ VÉC TƠ VÀ TỌA ĐỘ. II. CÁC BÀI TOÁN CƠ BẢN VỀ MẶT CẦU. III. CÁC BÀI TOÁN CƠ BẢN VỀ MẶT PHẲNG. IV. MẶT PHẲNG THEO ĐOẠN CHẮN VÀ ỨNG DỤNG. V. MẶT PHẲNG TRUNG TRỰC – PHÉP CHIẾU VUÔNG GÓC VÀ ỨNG DỤNG. VI. BÀI TOÁN CƠ BẢN VỀ ĐƯỜNG THẲNG TRONG KHÔNG GIAN. VII. HÌNH CHIẾU VUÔNG GÓC CỦA ĐIỂM LÊN ĐƯỜNG THẲNG. VIII. BÀI TẬP TỔNG HỢP CUỐI PHẦN 1. IX. PHỤ LỤC: PHÂN TÍCH MỘT SỐ DẠNG TOÁN VÀ PHƯƠNG PHÁP GIẢI.
Bài giảng phương pháp tọa độ trong không gian - Nguyễn Hoàng Việt
Tài liệu gồm 100 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tóm tắt lý thuyết cần nhớ, phân loại và phương pháp giải các dạng toán chuyên đề phương pháp tọa độ trong không gian Oxyz (Toán 12 phần Hình học chương 3). Chương 3 . PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN 1. Bài 1. TỌA ĐỘ VÉC TƠ – TỌA ĐỘ ĐIỂM 1. A LÝ THUYẾT CẦN NHỚ 1. B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN 3. + Dạng 1. Tọa độ véc tơ 3. + Dạng 2. Tọa độ điểm 6. + Dạng 3. Hình chiếu, đối xứng qua các trục, các mặt toạ độ 11. + Dạng 4. Tính diện tích và thể tích 12. C BÀI TẬP TỰ LUYỆN 14. Bài 2. PHƯƠNG TRÌNH MẶT CẦU 17. A LÝ THUYẾT CẦN NHỚ 17. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 17. + Dạng 1. Xác định tâm I, bán kính r của mặt cầu cho trước 17. + Dạng 2. Mặt cầu dạng khai triển (S): x2 + y2 + z2 − 2ax − 2by − 2cz + d = 0 18. + Dạng 3. Lập phương trình mặt cầu 20. + Dạng 4. Vị trí tương đối 24. C BÀI TẬP TỰ LUYỆN 26. Bài 3. PHƯƠNG TRÌNH MẶT PHẲNG 29. A LÝ THUYẾT CẦN NHỚ 29. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 31. + Dạng 1. Xác định véc tơ pháp tuyến và điểm thuộc mặt phẳng 31. + Dạng 2. Lập phương trình mặt phẳng khi biết các yếu tố liên quan 31. + Dạng 3. Phương trình theo đoạn chắn 35. + Dạng 4. Khoảng cách và góc 36. + Dạng 5. Vị trí tương đối của hai mặt phẳng 38. + Dạng 6. Vị trí tương đối của mặt phẳng với mặt cầu 39. C BÀI TẬP TỰ LUYỆN 43. Bài 4. PHƯƠNG TRÌNH ĐƯỜNG THẲNG 46. A LÝ THUYẾT CẦN NHỚ 46. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 49. + Dạng 1. Xác định điểm thuộc và véc tơ chỉ phương của đường thẳng 49. + Dạng 2. Viết phương trình đường thẳng khi biết vài yếu tố liên quan 50. + Dạng 3. Vị trí tương đối của hai đường thẳng 53. + Dạng 4. Vị trí tương đối của đường thẳng và mặt phẳng 55. + Dạng 5. Góc và khoảng cách 56. + Dạng 6. Hình chiếu H của điểm M lên mặt phẳng (P) 58. + Dạng 7. Hình chiếu H của điểm M lên đường thẳng d 59. C BÀI TẬP TỰ LUYỆN 61. Bài 5. MỘT SỐ BÀI TOÁN CỰC TRỊ 66. A PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 66. + Dạng 1. Tìm max – min bằng cách thiết lập hàm và khảo sát hàm 66. + Dạng 2. Tìm max – min bằng cách sử dụng mối quan hệ giữa đường cao và đường xiên 68. + Dạng 3. Tìm max – min bằng cách quy về tìm hình chiếu của điểm lên mặt 70. + Dạng 4. Tìm max – min bằng cách quy về tìm điều kiện ba điểm thẳng hàng 73. + Dạng 5. Tìm max min liên quan đến phương trình theo đoạn chắn 74. B BÀI TẬP TỰ LUYỆN 76. Bài 6. BỘ ĐỀ ÔN TẬP CUỐI CHƯƠNG 80. A ĐỀ SỐ 1 80. B ĐỀ SỐ 2 83. C ĐỀ SỐ 3 85. D ĐỀ SỐ 4 88. E ĐỀ SỐ 5 91. Bài 7. ĐÁP ÁN TRẮC NGHIỆM CÁC CHỦ ĐỀ 94. A ĐÁP ÁN TRẮC NGHIỆM BÀI 1 94. B ĐÁP ÁN TRẮC NGHIỆM BÀI 2 94. C ĐÁP ÁN TRẮC NGHIỆM BÀI 3 94. D ĐÁP ÁN TRẮC NGHIỆM BÀI 4 94. E ĐÁP ÁN TRẮC NGHIỆM BÀI 5 94. F ĐÁP ÁN TRẮC NGHIỆM CÁC ĐỀ TỔNG ÔN 94.
Chuyên đề phương pháp tọa độ trong không gian - Phạm Hùng Hải
Tài liệu gồm 97 trang, được biên soạn bởi thầy giáo Phạm Hùng Hải, tổng hợp lý thuyết, các dạng toán và bài tập chuyên đề phương pháp tọa độ trong không gian Oxyz, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 3. CHƯƠNG 3 . HÌNH HỌC KHÔNG GIAN OXYZ 1. BÀI 1. HỆ TỌA ĐỘ TRONG KHÔNG GIAN 1. A Định nghĩa hệ trục tọa độ 1. B Tọa độ véc-tơ 1. C Tọa độ điểm 2. D Tích có hướng của hai véc-tơ 2. E Phương trình mặt cầu 3. BÀI 2. PHƯƠNG TRÌNH MẶT PHẲNG 25. A Kiến thức cơ bản cần nhớ 25. BÀI 3. PHƯƠNG TRÌNH ĐƯỜNG THẲNG 49. A Kiến thức cơ bản cần nhớ 49. B Xác định các yếu tố cơ bản của đường thẳng 51. C Góc 53. D Khoảng cách 54. E Vị trí tương đối 55. + Dạng 1. Vị trí tương đối giữa đường thẳng và mặt phẳng 56. + Dạng 2. Vị trí giữa đường thẳng và mặt cầu 58. + Dạng 3. VỊ TRÍ TƯƠNG ĐỐI CỦA ĐƯỜNG THẲNG VÀ ĐƯỜNG THẲNG 59. F Viết phương trình đường thẳng 60. G Hình chiếu, điểm đối xứng và bài toán liên quan (vận dụng cao) 73. H Bài toán cực trị và một số bìa toán khác (vận dụng cao) 81. + Dạng 4. Tâm tỉ cự 81. + Dạng 5. Bài toán cực trị liên quan đến thẳng hàng 85.