Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

10 đề khảo sát chất lượng học sinh giỏi lớp 8 môn Toán (nội dung học kì 1 (HK1))

Nội dung 10 đề khảo sát chất lượng học sinh giỏi lớp 8 môn Toán (nội dung học kì 1 (HK1)) Bản PDF - Nội dung bài viết Tuyển tập 10 đề khảo sát chất lượng học sinh giỏi lớp 8 môn Toán (HK1) Tuyển tập 10 đề khảo sát chất lượng học sinh giỏi lớp 8 môn Toán (HK1) Tài liệu này gồm 10 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), dành cho học sinh giỏi lớp 8. Các đề được tạo ra để kiểm tra kiến thức và kỹ năng của học sinh trong học kỳ 1. Nội dung của sách tập trung vào việc giúp học sinh rèn luyện và nâng cao kiến thức Toán của mình. Các đề khảo sát được biên soạn theo cấu trúc đề thi chọn HSG Toán lớp 8 của sở Giáo dục và Đào tạo tỉnh Thái Bình, giúp học sinh quen với định dạng và cấu trúc của đề thi chính thức. Ví dụ về một số câu hỏi trong tài liệu bao gồm: Chứng minh rằng tam giác BMD là tam giác vuông tại M. Chứng minh rằng đường thẳng AN song song với đường thẳng BC. Chứng minh rằng trong 5 số nguyên dương, luôn tồn tại số chia hết cho 5 hoặc tổng của một số số có thể chia hết cho 5. Bằng cách tham gia giải các đề khảo sát trong tài liệu, học sinh sẽ có cơ hội củng cố kiến thức Toán, rèn luyện kỹ năng giải quyết vấn đề và phát triển khả năng tư duy logic của mình.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát học sinh giỏi môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND huyện Kim Thành, tỉnh Hải Dương. Trích dẫn đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Kim Thành – Hải Dương : + Cho biểu thức. Rút gọn A và tìm giá trị nguyên của x để A nhận giá trị nguyên. + Cho a, b, c là các số nguyên và thỏa mãn a3 + b3 = 5c3 + 11d3. Chứng minh rằng tổng (a + b + c + d) chia hết cho 6. + Cho tam giác ABC vuông tại A (AB < AC). Vẽ đường cao AH (H thuộc BC). Trên tia đối của tia BC lấy điểm K sao cho KH = HA. Qua K kẻ đường thẳng (d) song song với AH, (d) cắt đường thắng AC tại P. Gọi Q là trung điểm của BP, tia AQ cắt đường thẳng BC tại I. Chứng minh.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT thành phố Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 THCS năm học 2021 – 2022 phòng Giáo dục và Đào tạo thành phố Ninh Bình, tỉnh Ninh Bình.
Đề học sinh năng khiếu Toán 8 năm 2021 - 2022 phòng GDĐT Thanh Trì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra học sinh năng khiếu môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Thanh Trì, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 15 tháng 04 năm 2022. Trích dẫn đề học sinh năng khiếu Toán 8 năm 2021 – 2022 phòng GD&ĐT Thanh Trì – Hà Nội : + Cho ABC có độ dài các cạnh lần lượt là a, b, c; chu vi của tam giác là 2p. Chứng minh rằng? + Cho đoạn thẳng AB và một điểm M bất kì trên đoạn thẳng đó (M khác A và B). Trên cùng một nửa mặt phẳng bờ AB dựng hai hình vuông AMCD và BMEF có tâm đối xứng lần lượt là hai điểm O và I. Gọi N là giao điểm của AE và BC, P là giao điểm của AC và BE. a) Chứng minh: E là trực tâm của ABC từ đó suy ra BC vuông góc với AE. b) Chứng minh ba điểm D, N, F thẳng hàng. c) Gọi K là giao điểm của AC và MN. Chứng minh: AP.CK = AK.CP d) Xác định vị trí của điểm M trên đoạn thẳng AB sao cho đoạn thẳng MN có độ dài lớn nhất. + Người ta dùng các số 1, 2, 3, 4, 5, 6, 7, 8 để gán cho các đỉnh của một hình lập phương, hai đỉnh khác nhau thì gán các số khác nhau. Sau đó tính tổng ở hai đỉnh kề nhau. Chứng minh rằng có ít nhất hai tổng bằng nhau?
Đề HSG huyện Toán 8 năm 2021 - 2022 phòng GDĐT Thuận Thành - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện cấp THCS môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND huyện Thuận Thành, tỉnh Bắc Ninh; kỳ thi được diễn ra vào thứ Tư ngày 13 tháng 04 năm 2022. Trích dẫn đề HSG huyện Toán 8 năm 2021 – 2022 phòng GD&ĐT Thuận Thành – Bắc Ninh : + Cho x y z là các số thực dương thoả mãn điều kiện: x + y + z = x.y.z. Chứng minh rằng? + Cho hình bình hành ABCD, lấy điểm M trên BD sao cho MB khác MD. Đường thẳng qua M và song song với AB cắt AD và BC lần lượt tại E và F. Đường thẳng qua M và song song với AD cắt AB và CD lần lượt tại K và H. 1. Chứng minh: KF // EH. 2. Chứng minh: các đường thẳng EK, HF, BD đồng quy. 3. Chứng minh: S_MKAE = S_MHCF. + Giả sử số A được viết bởi 2n chữ số 1; số B được viết bởi n chữ số 4 với n là số nguyên dương bất kỳ. Chứng minh rằng số A + B + 1 bằng bình phương của một số nguyên.