Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

10 đề khảo sát chất lượng học sinh giỏi lớp 8 môn Toán (nội dung học kì 1 (HK1))

Nội dung 10 đề khảo sát chất lượng học sinh giỏi lớp 8 môn Toán (nội dung học kì 1 (HK1)) Bản PDF - Nội dung bài viết Tuyển tập 10 đề khảo sát chất lượng học sinh giỏi lớp 8 môn Toán (HK1) Tuyển tập 10 đề khảo sát chất lượng học sinh giỏi lớp 8 môn Toán (HK1) Tài liệu này gồm 10 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), dành cho học sinh giỏi lớp 8. Các đề được tạo ra để kiểm tra kiến thức và kỹ năng của học sinh trong học kỳ 1. Nội dung của sách tập trung vào việc giúp học sinh rèn luyện và nâng cao kiến thức Toán của mình. Các đề khảo sát được biên soạn theo cấu trúc đề thi chọn HSG Toán lớp 8 của sở Giáo dục và Đào tạo tỉnh Thái Bình, giúp học sinh quen với định dạng và cấu trúc của đề thi chính thức. Ví dụ về một số câu hỏi trong tài liệu bao gồm: Chứng minh rằng tam giác BMD là tam giác vuông tại M. Chứng minh rằng đường thẳng AN song song với đường thẳng BC. Chứng minh rằng trong 5 số nguyên dương, luôn tồn tại số chia hết cho 5 hoặc tổng của một số số có thể chia hết cho 5. Bằng cách tham gia giải các đề khảo sát trong tài liệu, học sinh sẽ có cơ hội củng cố kiến thức Toán, rèn luyện kỹ năng giải quyết vấn đề và phát triển khả năng tư duy logic của mình.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát năng lực Toán 8 năm 2021 - 2022 phòng GDĐT Thái Thụy - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát năng lực học sinh môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Thái Thụy, tỉnh Thái Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát năng lực Toán 8 năm 2021 – 2022 phòng GD&ĐT Thái Thụy – Thái Bình : + Tìm a, b để đa thức 4 3 A(x) x 5x ax b chia hết cho đa thức 2 B(x) x 5x 8. + Cho tam giác ABC vuông tại A (AB < AC) có AD là phân giác, M và N lần lượt là hình chiếu vuông góc của D trên AB và AC, E là giao điểm của BN và DM, F là giao điểm của CM và DN. 1. Chứng minh tứ giác AMDN là hình vuông và AB.DC = AC.BD 2. Chứng minh EF // BC 3. Gọi H là giao điểm của BN và CM chứng minh ANB đồng dạng với NFA và H là trực tâm của AEF. + Cho x, y > 0 thỏa mãn 32×6 + 4y3 = 1. Tìm giá trị lớn nhất của biểu thức 2 3 2 2 2x y 2021 2022 x y 2022 x y 3033 A.
Đề học sinh giỏi huyện Toán 8 năm 2021 - 2022 phòng GDĐT Thọ Xuân - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Thọ Xuân, tỉnh Thanh Hoá; kỳ thi được diễn ra vào Chủ Nhật ngày 27 tháng 03 năm 2022. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2021 – 2022 phòng GD&ĐT Thọ Xuân – Thanh Hoá : + Một ca nô chạy xuôi từ bến A đến bến B hết 2 giờ 30 phút và chạy ngược từ bến B về bến A hết 3 giờ 15 phút. Tính khoảng cách giữa hai bến sông A và B, biết một đám bèo thả trôi trên sông (không bị vật cản) trôi được 600m sau 12 phút. + Cho hai số nguyên m, n thỏa mãn: m2 + n2 – 2(m + n) + 1 = 2mn. Chứng minh rằng tích mn chia hết cho 4. + Cho đoạn thẳng AB và một điểm M bất kì trên đoạn thẳng đó (M khác A và B). Trên cùng một nửa mặt phẳng bờ AB, dựng hai hình vuông AMCD và BMEF có tâm đối xứng lần lượt là hai điểm O và I. Gọi N là giao điểm của AE và BC, P là giao điểm của AC và BE. 1. Chứng minh BN vuông góc với AE và tam giác ONI là tam giác vuông. 2. Gọi K là giao điểm của AC và MN. Chứng minh NC là đường phân giác trong của tam giác NKP và AP.CK = AK.CP. 3. Xác định vị trí của điểm M trên đoạn thẳng AB sao cho đoạn thẳng MN có độ dài lớn nhất.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Quỳnh Phụ - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Quỳnh Phụ, tỉnh Thái Bình. Trích dẫn đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Quỳnh Phụ – Thái Bình : + Cho hai đa thức f(x) = (x + 1)(x + 2)(x + 3)(x + 4)(x + 5) + 2014 và g(x) = x2 + 7x + 8. Tìm đa thức dư trong phép chia đa thức f(x) cho đa thức g(x). + Cho hai đa thức: f(x) = x3 – x – 6 và g(x) = x2 + ax + b. Xác định a và b để đa thức f(x) chia hết cho đa thức g(x). Khi đó tìm đa thức thương. + Cho tam giác ABC đều cố định; gọi M là trung điểm của BC. Hai điểm E và F theo thứ tự lần lượt di chuyển trên cạnh AB và cạnh AC sao cho EMF bằng 60° (E khác A và B; F khác A và C). Xác định vị trí điểm E trên cạnh AB sao cho AE + AF lớn nhất.
Đề học sinh giỏi huyện Toán 8 năm 2021 - 2022 phòng GDĐT Đông Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Đông Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào thứ Tư ngày 09 tháng 03 năm 2022. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2021 – 2022 phòng GD&ĐT Đông Sơn – Thanh Hóa : + Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N. a) Chứng minh rằng tứ giác AEMD là hình chữ nhật b) Biết diện tích tam giác BCH gấp bốn lần diện tich tam giác AEH.Chứng minh rằng AC = 2EF. c) Chứng minh rằng AD AM AN. + Tìm nghiệm tự nhiên của phương trình. + Chứng minh rằng với mọi số nguyên x, y thì A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4 là số chính phương.