Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề góc và số đo góc

Tài liệu gồm 13 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề góc và số đo góc, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 2: Góc. Mục tiêu : Kiến thức: + Hiểu khái niệm góc, góc nhọn, góc tù, góc vuông, góc bẹt. + Nắm được khái niệm điểm nằm trong góc. Kỹ năng: + Biết cách vẽ góc, đặt tên góc, đọc tên góc. + Nhận biết điểm nằm trong góc. + Nhận biết góc nhọn, góc vuông, góc tù, góc bẹt. + Biết cách đo góc bằng thước đo góc, so sánh hai góc. I. LÍ THUYẾT TRỌNG TÂM 1. Góc. Góc tạo bởi hai tia chung gốc: + Gốc chung là đỉnh của góc. Hai tia là hai cạnh của góc. + Đặc biệt: góc bẹt là góc có hai cạnh là hai tia đối nhau. Góc xOy được kí hiệu là xOy hoặc yOx. Điểm nằm trong góc: + Hai tia Ox và Oy không đối nhau, điểm M gọi là điểm nằm trong góc xOy hay M nằm trong góc xOy nếu OM nằm giữa hai tia Ox và Oy. 2. Số đo góc. Đo góc: – Dụng cụ: Thước đo góc. – Cách đo góc xOy: + Bước 1. Đặt thước đo góc sao cho tâm của thước trùng với gốc O của góc, một cạnh của góc đi qua vạch 0. + Bước 2. Xem cạnh thứ hai của góc đi qua vạch nào của thước, giả sử là vạch 120 thì xOy 120. So sánh hai góc: + Nếu hai góc A và B có số đo bằng nhau thì hai góc đó bằng nhau, ta viết A = B. + Nếu số đo của góc A nhỏ hơn số đo của góc B thì góc A nhỏ hơn góc B ta viết A B. Góc vuông, góc nhọn, góc tù: + Góc có số đo bằng 90 là góc vuông. + Góc có số đo nhỏ hơn 90 là góc nhọn. + Góc có số đo lớn hơn góc vuông nhưng nhỏ hơn góc bẹt là góc tù. + Góc có số đo bằng 180 là góc bẹt. II. CÁC DẠNG BÀI TẬP Dạng 1 : Xác định góc, vẽ hình. Hai tia bất kì chung gốc đều tạo thành một góc. Dạng 2 : Số đo góc. Bài toán 1: Đo góc. Đổi số đo góc. Đơn vị đo góc. Các bước đo góc: + Đặt thước đo góc để tâm thước trùng với góc cần đo. + Vạch 0 trên thước nằm trên một cạnh. + Cạnh còn lại của góc đi qua vạch nào của thước đo góc thì đó là số đo của góc. Bài toán 2. So sánh góc. Trong hai góc, góc nào có số đo lớn hơn thì lớn hơn. Dạng 3 : Nhận biết góc nhọn, góc vuông, góc tù. Sử dụng các khái niệm góc vuông, góc nhọn, góc tù.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề góc và số đo góc
Nội dung Chuyên đề góc và số đo góc Bản PDF - Nội dung bài viết Chuyên đề góc và số đo góc Chuyên đề góc và số đo góc Chuyên đề này bao gồm 13 trang tài liệu, cung cấp lý thuyết cơ bản về góc và số đo góc, các dạng toán và bài tập thực hành. Tài liệu cung cấp đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập môn Toán phần Hình học, chương 2: Góc. Mục tiêu của chuyên đề này là: Kiến thức: Hiểu khái niệm về góc, góc nhọn, góc tù, góc vuông, góc bẹt. Nắm được khái niệm về điểm nằm trong góc. Kỹ năng: Biết cách vẽ góc, đặt tên góc, đọc tên góc. Nhận biết điểm nằm trong góc. Nhận biết các loại góc: nhọn, vuông, tù, bẹt. Biết cách đo góc bằng thước đo góc, so sánh hai góc. 1. LÝ THUYẾT TRỌNG TÂM 1.1. Góc: - Góc được tạo ra bởi hai tia chung gốc. Góc chung là đỉnh của góc và hai tia là hai cạnh của góc. - Điểm nằm trong góc khi nằm giữa hai tia của góc. 1.2. Số đo góc: - Đo góc bằng thước đo góc. Đặt thước sao cho tâm thước trùng với gốc của góc, cạnh của góc đi qua vạch 0 trên thước. Góc có số đo là vạch mà cạnh còn lại của góc đi qua. - So sánh hai góc: A = B nếu số đo hai góc bằng nhau, A < B nếu góc A nhỏ hơn góc B. Góc vuông, góc nhọn, góc tù được xác định dựa trên số đo của góc. 2. CÁC DẠNG BÀI TẬP 2.1. Dạng 1: Xác định góc, vẽ hình. 2.2. Dạng 2: Số đo góc, đổi số đo góc, đơn vị đo góc. 2.3. Dạng 3: So sánh góc dựa trên số đo. 2.4. Dạng 4: Nhận biết góc nhọn, góc vuông, góc tù. Chuyên đề góc và số đo góc sẽ giúp học sinh lớp 6 hiểu rõ hơn về các khái niệm và kỹ năng liên quan đến góc và số đo góc, từ đó nâng cao hiệu quả trong việc học tập và áp dụng kiến thức vào thực hành.
Chuyên đề nửa mặt phẳng
Nội dung Chuyên đề nửa mặt phẳng Bản PDF - Nội dung bài viết Chuyên đề nửa mặt phẳng Chuyên đề nửa mặt phẳng Bộ tài liệu này bao gồm 11 trang, cung cấp kiến thức về lý thuyết trọng tâm, các dạng toán và bài tập liên quan đến chuyên đề nửa mặt phẳng. Đặc biệt, tài liệu cung cấp đáp án và lời giải chi tiết, giúp học sinh lớp 6 trong quá trình học tập chương trình Toán lớp 6 phần Hình học chương 2: Góc. Mục tiêu của chuyên đề này là: - Hiểu về khái niệm nửa mặt phẳng, hai nửa mặt phẳng đối nhau. - Nhận biết được nửa mặt phẳng và gọi tên các nửa mặt phẳng từ hình vẽ. - Nhận biết các điểm thuộc cùng nửa mặt phẳng. - Nhận biết tia nằn giữa hai tia. Trong chuyên đề này, học sinh sẽ được hướng dẫn về các khái niệm cơ bản như: Lí thuyết trọng tâm: Nửa mặt phẳng bờ a là hình gồm đường thẳng a và một phần mặt phẳng bị chia ra bởi a. Hai nửa mặt phẳng đối nhau là hai nửa mặt phẳng có chung một bờ. Điều đáng chú ý là mỗi đường thẳng trên mặt phẳng cũng là bờ chung của hai nửa mặt phẳng đối nhau. Các dạng bài tập: - Dạng 1: Vẽ hình và mô tả về hình vẽ. - Dạng 2: Nhận biết đoạn thẳng có cắt hay không cắt đường thẳng cho trước. - Dạng 3: Nhận biết tia nằm giữa hai tia. Chuyên đề nửa mặt phẳng không chỉ giúp học sinh ôn tập kiến thức mà còn phát triển kỹ năng vẽ hình và mô tả các đoạn thẳng, tia trong không gian. Đây là một chuyên đề quan trọng giúp học sinh nắm vững các kiến thức cơ bản về hình học, chuẩn bị tốt cho các bài toán phức tạp hơn trong tương lai.
Chuyên đề trung điểm của đoạn thẳng
Nội dung Chuyên đề trung điểm của đoạn thẳng Bản PDF - Nội dung bài viết Chuyên đề trung điểm của đoạn thẳng Chuyên đề trung điểm của đoạn thẳng Tài liệu này bao gồm 13 trang, tập trung vào lý thuyết về trung điểm của đoạn thẳng, các dạng toán và bài tập liên quan. Nội dung chi tiết, kèm theo đáp án và lời giải dễ hiểu giúp học sinh lớp 6 hiểu rõ hơn về chương trình Toán lớp 6 phần Hình học chương 1: Đoạn thẳng. Mục tiêu của tài liệu này là: + Kiến thức: Học sinh sẽ nhận biết được khái niệm trung điểm của đoạn thẳng. + Kĩ năng: Học sinh sẽ vận dụng được tính chất trung điểm của đoạn thẳng và công thức cộng độ dài hai đoạn thẳng để tính độ dài đoạn thẳng. Họ cũng sẽ chứng minh được một điểm là trung điểm của một đoạn thẳng. I. Lí thuyết trọng tâm 1. Trung điểm của đoạn thẳng: Trung điểm M của đoạn thẳng AB là điểm nằm giữa A, B và cách đều A, B. 2. Cách vẽ trung điểm của đoạn thẳng: - Cách 1: Vẽ theo độ dài. Để vẽ trung điểm M của đoạn thẳng AB a cm, ta vẽ điểm M trên tia AB sao cho AM = MB = a. - Cách 2: Gấp giấy. Gấp giấy sao cho điểm A trùng với điểm B. Nếp gấp cắt đoạn AB tại trung điểm M của AB. II. Các dạng bài tập Dạng 1. Tính độ dài đoạn thẳng: Áp dụng tính chất trung điểm của đoạn thẳng và công thức cộng độ dài hai đoạn thẳng. + Nếu M là trung điểm của đoạn thẳng AB thì 2AB = AM + MB. + Nếu điểm M nằm giữa hai điểm A và B thì MA + MB = AB. Dạng 2. Chứng minh một điểm là trung điểm của một đoạn thẳng: Để chứng minh điểm M là trung điểm của đoạn thẳng AB, ta cần chứng minh: - Cách 1: Điểm M nằm giữa A và B (hoặc AM = MB = AB). - Cách 2: Chứng minh 2AB = MA + MB.
Chuyên đề đoạn thẳng và độ dài đoạn thẳng
Nội dung Chuyên đề đoạn thẳng và độ dài đoạn thẳng Bản PDF - Nội dung bài viết Chuyên đề đoạn thẳng và độ dài đoạn thẳng Chuyên đề đoạn thẳng và độ dài đoạn thẳng Tài liệu này bao gồm 18 trang, cung cấp thông tin về lý thuyết cơ bản về đoạn thẳng và độ dài đoạn thẳng. Nội dung tài liệu bao gồm các dạng toán và bài tập thực hành, kèm theo đáp án và lời giải chi tiết. Được thiết kế để hỗ trợ học sinh lớp 6 trong quá trình học tập môn Toán, đặc biệt là phần Hình học chương 1: Đoạn thẳng. Mục tiêu của tài liệu bao gồm việc giúp học sinh: Nhận biết khái niệm về đoạn thẳng và độ dài của đoạn thẳng. Thực hành kỹ năng đếm số đoạn thẳng tạo thành từ các điểm cho trước. Chỉ ra tính thẳng hàng và điểm nằm giữa hai điểm trong không gian. Calculating the length of a line segment using the formula for adding the length of line segments. Nội dung tài liệu được chia thành hai phần chính: I. LÝ THUYẾT CƠ BẢN II. CÁC DẠNG BÀI TẬP Các dạng bài tập bao gồm: Dạng 1: Đếm số đoạn thẳng được tạo thành từ các điểm đã cho. Dạng 2: Xác định tính thẳng hàng và điểm ở giữa hai điểm khác trong không gian. Dạng 3: Tính độ dài của đoạn thẳng. Thông qua việc thực hành các bài tập trong tài liệu, học sinh sẽ có cơ hội phát triển kỹ năng toán học quan trọng và hiểu rõ hơn về khái niệm đoạn thẳng và độ dài đoạn thẳng.