Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường THPT Nguyễn Huệ TT Huế

Nội dung Đề cuối học kì 1 (HK1) lớp 10 môn Toán năm 2022 2023 trường THPT Nguyễn Huệ TT Huế Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 1 môn Toán lớp 10 năm học 2022 – 2023 trường THPT Nguyễn Huệ, tỉnh Thừa Thiên Huế; đề thi mã đề 135 gồm 35 câu trắc nghiệm (70% số điểm) + 04 câu tự luận (30% số điểm), thời gian làm bài 90 phút (không kể thời gian phát đề). Trích dẫn Đề cuối học kỳ 1 Toán lớp 10 năm 2022 – 2023 trường THPT Nguyễn Huệ – TT Huế : + Một công ty sử dụng 3 dây chuyền I, II, III để đóng gói ngũ cốc lần lượt có thông tin trên bao bì như sau: 1,5 0,06 kg, 2 0,1 kg, 5 0,15 kg. Nếu dựa vào tiêu chí sai số tương đối để đánh giá chất lượng của các dây chuyền thì khẳng định nào sau đây ĐÚNG? A. Chất lượng của dây chuyền I tốt hơn dây chuyền III. B. Chất lượng của dây chuyền I tốt nhất trong 3 dây chuyền. C. Chất lượng của dây chuyền III tốt hơn dây chuyền II. D. Chất lượng của dây chuyền II tốt hơn dây chuyền I. + Kết quả đo chiều dài của một cây cầu được ghi là 150m 0,1m điều này có nghĩa là gì? A. Chiều dài đúng của cây cầu là một số nằm trong đoạn từ 149,9 m đến 150,1 m. B. Chiều dài đúng của cây cầu là một số lớn hơn 150 m. C. Chiều dài đúng của cây cầu là một số nhỏ hơn 150 m. D. Chiều dài đúng của cây cầu là 149,9 m hoặc là 150,1 m. + Trong năm học 2022 – 2023, bạn An muốn đạt ít nhất 8,0 điểm trung bình học kì 1 môn Toán. Biết rằng kết quả bạn An đã đạt được trong học kì 1 như sau: Môn Đánh giá thường xuyên Đánh giá GK Đánh giá CK ĐTB môn Toán lớp 7 8 7 9 7,5. Hỏi An cần đạt ít nhất bao nhiêu điểm đánh giá cuối học kì 1 (sau khi đã làm tròn) để An đạt mục tiêu đặt ra ban đầu. Biết rằng, theo thông tư 22/2021-BGDĐT ngày 20 tháng 7 năm 2021 của bộ Giáo dục và Đào tạo thì điểm trung bình môn học kì (sau đây viết tắt là ĐTBmhk) đối với mỗi môn học được tính như sau: ĐTBmhk = TĐĐGtx + 2 x ĐĐGgk + 3 x ĐĐGck Số ĐĐGtx+ 5. Trong đó, TĐĐGtx: Tổng điểm đánh giá thường xuyên. ĐĐGgk: Điểm đánh giá giữa kì. ĐĐGck: Điểm đánh giá cuối kì. Các kết quả đều được làm tròn đến hàng phần chục.

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra định kỳ lần 1 Toán 10 năm 2019 - 2020 sở GDĐT Bắc Ninh
Sáng thứ Ba ngày 17 tháng 12 năm 2019, sở Giáo dục và Đào tạo tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra định kỳ lần 1 môn Toán lớp 10 năm học 2019 – 2020, nhằm đánh giá tình hình học tập môn Toán của học sinh khối 10 trong giai đoạn học kỳ 1 năm học 2019 – 2020. Đề kiểm tra định kỳ lần 1 Toán 10 năm 2019 – 2020 sở GD&ĐT Bắc Ninh được biên soạn theo hình thức tự luận với 5 bài toán, đề thi có 1 trang, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề kiểm tra định kỳ lần 1 Toán 10 năm 2019 – 2020 sở GD&ĐT Bắc Ninh : + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC, biết A(-2;1), B(4;0), C(2;3). a. Tìm tọa độ trung điểm I của AB và tọa độ trọng tâm G của tam giác ABC. b. Cho D(m;2). Tìm m để ba điểm A, B, D thẳng hàng. [ads] + Cho tam giác ABC. Gọi I là trung điểm của AB và E thuộc cạnh AC sao cho EC = 2EA. a. Chứng minh rằng EA – EB = BI – AI. b. Hãy xác định điểm M thỏa mãn: 5AC – 3BC + 12MA = 0. + Cho hàm số y = x^2 + 2x – 3 (1). a. Lập bảng biến thiên và vẽ đồ thị (P) của hàm số (1). b. Tìm tọa độ giao điểm của đường thẳng d: y = x – 3 với đồ thị (P) của hàm số (1).
Đề kiểm tra học kỳ 1 Toán 10 năm 2019 - 2020 trường THPT Bình Tân - TP HCM
Đề kiểm tra học kỳ 1 Toán 10 năm học 2019 – 2020 trường THPT Bình Tân – thành phố Hồ Chí Minh gồm 01 trang với 08 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề kiểm tra học kỳ 1 Toán 10 năm 2019 – 2020 trường THPT Bình Tân – TP HCM : + Cho hình chữ nhật ABCD có tâm O, AB = 3a, BC = 2a. a) Chứng minh: MA + MB + MC + MD = 4MO với điểm M tùy ý. b) Tính độ dài của AB + AD. + Trong mặt phẳng Oxy, cho hai điểm M(1;1), N(−3;3). Tìm điểm P thuộc trục hoành Ox để 3 điểm M, N, P thẳng hàng. + Cho A(6;3), B(3;6), C(1;2). Tìm tọa độ điểm H là chân đường cao kẻ từ B của tam giác ABC.
Đề kiểm tra học kì 1 Toán 10 năm 2019 - 2020 trường Albert Einstein - TP HCM
Đề kiểm tra học kì 1 Toán 10 năm 2019 – 2020 trường Albert Einstein – TP HCM được biên soạn theo dạng đề thi tự luận, đề gồm 01 trang với 06 bài toán, thời gian làm bài 90 phút (không tính thời gian giáo viên coi thi phát đề). Trích dẫn đề kiểm tra học kì 1 Toán 10 năm 2019 – 2020 trường Albert Einstein – TP HCM : + Cổng Arch tại thành phố At. Louis của Mỹ có hình dạng là một Parabol (hình vẽ). Biết khoảng cách giữa hai chân cổng bằng 162m. Trên thành cổng, tại vị trí có độ cao 43m so với mặt đất (điểm M), người ta thả một sợi dây chạm đất (dây căng thẳng theo phương vuông góc với mặt đất). Vị trí chạm đất của đầu sợi dây này cách chân cổng A một đoạn 10m. Giả sử các số liệu trên là chính xác. Hãy tính độ cao của cổng Arch (tính từ mặt đất đến điểm cao nhất của cổng). + Xác định parabol (P) biết (P): y = ax2 + bx + c đi qua điểm A(2;1) và có tọa độ đỉnh I(1;-1). + Lập bảng biến thiên và vẽ đồ thị hàm số y = x2 – 4x.
Đề kiểm tra học kỳ 1 Toán 10 năm 2019 - 2020 trường THPT Kim Liên - Hà Nội
Ngày … tháng 12 năm 2019, trường THPT Kim Liên – Hà Nội tổ chức kỳ thi kiểm tra chất lượng cuối HK1 môn Toán lớp 10 năm học 2019 – 2020. Đề kiểm tra học kỳ 1 Toán 10 năm 2019 – 2020 trường THPT Kim Liên – Hà Nội có mã đề 101, đề gồm 02 bài thi: bài thi trắc nghiệm gồm 25 câu, chiếm 5,0 điểm, học sinh làm bài trong 45 phút; bài thi tự luận gồm 03 câu, chiếm 5,0 điểm, học sinh làm bài trong 45 phút, đề thi có lời giải chi tiết. Trích dẫn đề kiểm tra học kỳ 1 Toán 10 năm 2019 – 2020 trường THPT Kim Liên – Hà Nội : + Mệnh đề nào sau đây là phủ định của mệnh đề “Mọi động vật đều di chuyển”? A. Có ít nhất một động vật di chuyển. B. Có ít nhất một động vật không di chuyển. C. Mọi động vật đều không di chuyển. D. Mọi động vật đều đứng yên. + Cho tam giác ABC. Tìm tập hợp các điểm M thỏa mãn |MB – MC| = |BM – BA|. A. Đường tròn tâm A, bán kính BC. B. Đường thẳng qua A và song song với BC. C. Đường thẳng AB. D. Trung trực đoạn BC. [ads] + Trong các phát biểu sau, phát biểu nào là mệnh đề? A. 3 là số nguyên tố lẻ nhỏ nhất. B. Đề thi hôm nay khó quá! C. Một tam giác cân thì mỗi góc đều bằng 60o phải không? D. Các em hãy cố gắng học tập! + Cho hình chữ nhật ABCD có AD = a, AB = x (x > 0), K là trung điểm của AD. a) Biểu diễn AC, BK theo AB, AD. b) Tìm x theo a để AC ⊥ BK. c) Đặt hình chữ nhật ABCD trong hệ trục tọa độ Oxy sao cho A(1;5), C(6;0). Gọi I là giao điểm của BK và AC, tìm tọa độ điểm I. + Khi nuôi cá thí nghiệm trong hồ, một nhà khoa học đã thấy rằng: Nếu trên mỗi đơn vị diện tích của mặt hồ có x con cá (x thuộc Z+) thì trung bình mỗi con cá sau một vụ cân nặng là 480 − 20x (gam). Hỏi phải thả bao nhiêu con cá trên một đơn vị diện tích của mặt hồ để sau mỗi vụ thu hoạch được nhiều cá nhất?