Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (vòng 2)

Sáng thứ Hai ngày 13 tháng 07 năm 2020, trường THPT chuyên Khoa học Tự nhiên, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (vòng 2) dành cho thí sinh thi vào các lớp chuyên Toán, đề gồm 01 trang với 04 bài toán tự luận, thời gian làm bài 150 phút. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2020 trường THPT chuyên KHTN Hà Nội (vòng 2) : + Tìm tất cả các số nguyên dương a, b, c sao cho cả ba số 4a^2 + 5b, 4b^2 + 5c, 4c^2 + 5a đều là bình phương của số nguyên dương. + Từ một bộ bốn số thực (a, b, c, d) ta xây dựng bộ số mới (a + b, b + c, c + d, d + a)  và liên tiếp xây dựng các bộ số mới theo quy tắc trên. Chứng minh rằng nếu ở hai thời điểm khác nhau ta thu được cùng một bộ số (có thể khác thứ tự) thì bộ số ban đầu phải có dạng (a, -a, a, -a). [ads] + Cho tam giác ABC cân tại A với BAC < 90 độ. Điểm E thuộc cạnh AC sao cho AEB > 90 độ. Gọi P là giao điểm của BE với trung trực BC. Gọi K là hình chiếu vuông góc của P lên AB. Gọi Q là hình chiếu vuông góc của E lên AP. Gọi giao điểm của EQ và PK là F. 1) Chứng minh rằng bốn điểm A, E, P, F cùng thuộc một đường tròn. 2) Gọi giao điểm của KQ và PE là L. Chứng minh rằng LA vuông góc với LE. 3) Gọi giao điểm của FL và AB là S. Gọi giao điểm của KE và AL là T. Lấy R là điểm đối xứng của A qua L. Chứng minh rằng đường tròn ngoại tiếp tam giác AST và đường tròn ngoại tiếp tam giác BPR tiếp xúc với nhau.

Nguồn: toanmath.com

Đọc Sách

Đề minh họa Toán tuyển sinh lớp 10 năm 2019 - 2020 sở GDĐT Khánh Hòa
Vừa qua, sở Giáo dục và Đào tạo tỉnh Khánh Hòa đã công bố đề minh họa kỳ thi tuyển sinh vào lớp 10 năm học 2019 – 2020 môn Toán, đề được biên soạn theo cấu trúc tương tự đề các năm học trước, đề gồm 01 trang với 05 bài toán tự luận, học sinh làm bài trong thời gian 120 phút. Trích dẫn đề minh họa Toán tuyển sinh lớp 10 năm 2019 – 2020 sở GD&ĐT Khánh Hòa : + Trên mặt phẳng tọa độ Oxy, cho điểm A(3;-2) và đường thẳng d có phương trình y = x – m với m là tham số. a) Tìm m để điểm N thuộc đường thẳng d. b) Với m tìm được, xác định tọa độ giao điểm của đường thẳng d và parabol (P) có phương trình y = -4x^2. [ads] + Cho AB và CD là hai đường kính khác nhau của đường tròn (O;R). Đường thẳng vuông góc với AB tại A cắt các đường thẳng BC, BD lần lượt tại E và F. a) Chứng minh góc BAD = BFA. b) Chứng minh tứ giác CDEF là tứ giác nội tiếp. c) Gọi I, J lần lượt là trung điểm của các đoạn thẳng AE, AF và H là trực tâm của tam giác BIJ. Tính độ dài đoạn thẳng AH theo R.
Đề tuyển sinh vào 10 môn Toán năm 2018 - 2019 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán năm học 2018 – 2019 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 07 tháng 07 năm 2018; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề tuyển sinh vào 10 chuyên môn Toán chuyên năm 2018 - 2019 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 chuyên môn Toán chuyên năm học 2018 – 2019 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2018; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề tuyển sinh vào 10 chuyên môn Toán cơ sở năm 2018 - 2019 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 chuyên môn Toán cơ sở năm học 2018 – 2019 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 01 tháng 06 năm 2018; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.