Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phép nhân và phép chia các đa thức

Nhằm giúp bồi dưỡng năng lực học tập chương trình Toán lớp 8 chương 1, THCS. giới thiệu đến các em học sinh tài liệu chuyên đề phép nhân và phép chia các đa thức. Tài liệu gồm 44 trang bao gồm kiến thức cơ bản, hướng dẫn mẫu và bài tập tự luận các chủ đề: 1. Nhân đơn thức với đa thức : Muốn nhân một đơn thức với một đa thức, ta nhân đơn thức đó với từng hạng tử của đa thức rồi cộng các tích của chúng lại với nhau. 2. Nhân đa thức với đa thức : Muốn nhân một đathức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau. 3. Những hằng đẳng thức đáng nhớ : Bình phương của một tổng, Bình phương của một hiệu, Hiệu hai bình phương. 4. Những hằng đẳng thức đáng nhớ : Lập phương của một tổng, Lập phương của một hiệu. 5. Những hằng đẳng thức đáng nhớ : Tổng hai lập phương, Hiệu hai lập phương. 6. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung . + Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức đó thành một tích của những đa thức. + Phương pháp đặt nhân tử chung là một phương pháp để phân tích đa thức thành nhân tử bằng cách nhóm các hạng tử có chung nhân tử. [ads] 7. Phân tích đa thức thành nhân tử bằng phương pháp hằng đẳng thức : Ta có thể sử dụng các hằng đẳng thức đáng nhớ theo chiều biến đổi từ một vế là một đa thức sang vế kia là một tích của các nhân tử hoặc lũy thừa của một đơn thức đơn giản hơn. 8. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử : Khi sử dụng phương pháp nhóm hạng tử để phân tích đa thức thành nhân tử, ta cần nhận xét đặc điểm của các hạng tử, nhóm các hạng tử một cách thích hợp nhằm làm xuất hiện dạng hằng đẳng thức hoặc xuất hiện nhân tử chung của các nhóm. Phân tích đa thức thành nhân tử (nâng cao). 9. Phân tích đa thức thành nhân tử phối hợp nhiều phương pháp : Nhiều khi phải phối hợp nhiều phương pháp để phân tích đa thức thành nhân tử. Thông thường, ta xem xét đến phương pháp nhân tử chung trước tiên, tiếp đó ta xét xem có thể sử dụng được các hằng đẳng thức đã học hay không? Có thể nhóm hoặc tách hạng tử, thêm và bớt cùng một hạng tử hay không? 10. Chia đơn thức cho đơn thức . Đơn thức A chia hết cho đơn thức B khi mỗi biến của B đều là biến của A với số mũ không lớn hơn số mũ của nó trong A. Muốn chia đơn thức A cho đơn thức B (trường hợp A chia hết cho B) ta làm như sau: + Chia hệ số của đơn thức A cho hệ số của đơn thức B. + Chia lũy thừa của từng biến trong A cho lũy thừa của cùng biến đó trong B. + Nhân các kết quả vừa tìm được với nhau. 11. Chia đa thức cho đơn thức : Muốn chia đa thức A cho đơn thức B (trường hợp các hạng tử của đa thức A đều chia hết cho đơn thức B) ta chia mỗi hạng tử của A cho B rồi cộng các kết quả lại với nhau. 12. Chia đa thức một biến đã sắp xếp . Phép chia hai đa thức đã sắp xếp được thực hiện tương tự như phép chia hai số tự nhiên: + Chia hạng tử bậc cao nhất của đa thức bị chia cho hạng tử bậc cao nhất của đa thức chia, được hạng tử cao nhất của thương. + Chia hạng tử bậc cao nhất của dư thứ nhất cho hạng tử bậc cao nhất của đa thức chia, được hạng tử thứ hai của thương. + Quá trình trên diễn ra liên tục đến khi được dư cuối cùng bằng 0 (phép chia hết) hoặc dư cuối cùng khác 0 có bậc thấp hơn bậc của đa thức chia (phép chia có dư). Đề kiểm tra chương I – Đại số 8.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hình thang
Nội dung Chuyên đề hình thang Bản PDF - Nội dung bài viết Chuyên đề hình thangI. Tóm tắt lý thuyếtII. Bài tập và các dạng toán Chuyên đề hình thang Tài liệu này bao gồm 09 trang, tóm tắt lý thuyết quan trọng cần nắm vững, phân loại các dạng toán và hướng dẫn cách giải từng dạng toán, lựa chọn các bài tập từ dễ đến khó về chuyên đề hình thang. Đồng thời, có đáp án và lời giải chi tiết, giúp học sinh hỗ trợ trong quá trình học tập chương trình Hình học lớp 8 chương 1: Tứ giác. I. Tóm tắt lý thuyết Tóm tắt những lý thuyết quan trọng về hình thang như tính chất, định nghĩa, mối quan hệ giữa các cạnh và góc. II. Bài tập và các dạng toán A. Các dạng bài minh họa Dạng 1. Tính số đo các góc: Sử dụng tính chất của đường thẳng song song và tổng của bốn góc của một tứ giác. Kết hợp với các kiến thức đã học để tính toán số đo các góc. Dạng 2. Chứng minh hình thang, hình thang vuông: Áp dụng định nghĩa của hình thang và hình thang vuông để chứng minh. Dạng 3. Chứng minh mối liên hệ giữa các cạnh, tính diện tích của hình thang, hình thang vuông: Sử dụng các kiến thức về tỉ số, diện tích để giải quyết bài toán. B. Phiếu bài tự luyện Cung cấp các bài tập tự luyện để học sinh tự kiểm tra và rèn luyện kỹ năng giải toán liên quan đến hình thang.
Chuyên đề tứ giác
Nội dung Chuyên đề tứ giác Bản PDF - Nội dung bài viết Chuyên đề tứ giác: Tài liệu học tập chi tiết và linh hoạt Chuyên đề tứ giác: Tài liệu học tập chi tiết và linh hoạt Tài liệu Chuyên đề tứ giác bao gồm 15 trang thông tin tóm tắt lý thuyết chính xác cần thiết để học sinh hiểu rõ về chủ đề này. Cuốn sách cung cấp các phân dạng và hướng dẫn cách giải các dạng toán liên quan đến tứ giác, từ những bài cơ bản đến nâng cao. Để giúp học sinh tự rèn luyện, sách đã tuyển chọn các bài tập đa dạng, có đáp án và lời giải chi tiết. Với phần tóm tắt lý thuyết, học sinh sẽ nắm vững những kiến thức quan trọng về tứ giác. Phần bài tập và các dạng toán được chia thành hai phần: các dạng bài minh họa cơ bản và các dạng bài nâng cao, giúp phát triển tư duy toán học của học sinh. Cuốn sách cũng cung cấp phiếu bài tự luyện, giúp học sinh tự kiểm tra kiến thức và làm quen với các dạng bài khó hơn. Với cuốn tài liệu này, học sinh sẽ được hỗ trợ đáng kể trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. Tài liệu không chỉ đưa ra kiến thức một cách cụ thể và dễ hiểu mà còn giúp học sinh nắm vững kỹ năng giải toán và phát triển tư duy logic của mình.
Tuyển tập 405 bài toán giải bằng cách lập phương trình có đáp án chi tiết
Nội dung Tuyển tập 405 bài toán giải bằng cách lập phương trình có đáp án chi tiết Bản PDF - Nội dung bài viết Tuyển tập 405 bài toán giải bằng cách lập phương trình có đáp án chi tiết Tuyển tập 405 bài toán giải bằng cách lập phương trình có đáp án chi tiết Tài liệu này được biên soạn bởi thầy giáo Nguyễn Chí Thành và bao gồm 405 bài toán được giải bằng cách lập phương trình với đáp án và lời giải chi tiết. Được thiết kế để giúp học sinh lớp 8 tham khảo khi học chương trình Toán lớp 8 phần Đại số 8 chương 3: Phương trình bậc nhất một ẩn. Trích dẫn một số bài toán từ tài liệu: - Hai cây cọ mọc đối diện nhau ở hai bên bờ sông, cách nhau 50 thước, một cây cao 30 thước, một cây cao 20 thước. trên ngọn của mỗi cây có một con chim đang đậu. Bỗng nhiên cả hai con chim đều nhìn thấy một con cá bơi trên mặt nước giữa hai cây, chúng bổ nhào xuống con cá cùng một lúc với vận tốc như nhau và cùng đến đích một lúc. Tính khoảng cách từ gốc cây cao hơn đến con cá. - Tiểu sử của nhà toán học cố đại nổi tiếng Diophante được tóm tắt trên bia mộ của ông. Tính tuổi thọ của Diophante dựa trên thông tin trên bia mộ. - Một người dự định đi từ A đến B trong một thời gian quy định với vận tốc 10km/h. Sau khi đi được nửa quãng đường người đó nghỉ 30 phút, để đến B đúng dự định người đó tăng vận tốc lên 15km/h. Tính quãng đường AB.
Chuyên đề phương trình chứa dấu giá trị tuyệt đối
Nội dung Chuyên đề phương trình chứa dấu giá trị tuyệt đối Bản PDF - Nội dung bài viết Chuyên đề phương trình chứa dấu giá trị tuyệt đối Chuyên đề phương trình chứa dấu giá trị tuyệt đối Tài liệu này bao gồm 19 trang, tóm tắt lý thuyết quan trọng về phương trình chứa dấu giá trị tuyệt đối, phân loại và hướng dẫn cách giải các dạng toán liên quan. Nội dung tài liệu cũng bao gồm một loạt bài tập từ cơ bản đến nâng cao về chuyên đề phương trình này, kèm theo đáp án và lời giải chi tiết. Đặc biệt, tài liệu này được thiết kế để hỗ trợ học sinh trong quá trình học chương trình Đại số lớp 8 chương 4 với chủ đề Bất phương trình bậc nhất một ẩn. Trải qua các bài giảng, học sinh sẽ nhắc lại kiến thức về giá trị tuyệt đối và học cách giải các dạng phương trình chứa dấu giá trị tuyệt đối, bao gồm: Dạng 1: Phương trình |f(x)| = k với k là hằng số không âm. Dạng 2: Phương trình |f(x)| = |g(x)|. Dạng 3: Phương trình |f(x)| = g(x). Ở phần phương pháp giải toán, tài liệu cung cấp các bước chi tiết để giải từng dạng toán, như: Phương pháp giải dạng Toán lớp 1: Phán định giá trị tuyệt đối. Phương pháp giải dạng Toán lớp 2: Giải phương trình dạng |f(x)| = k với k là hằng số không âm. Phương pháp giải dạng Toán lớp 3: Giải phương trình dạng |f(x)| = |g(x)|. Phương pháp giải dạng Toán lớp 4: Giải phương trình dạng |f(x)| = g(x). Trong tài liệu này, học sinh sẽ được trải nghiệm và rèn luyện kỹ năng giải các phương trình chứa dấu giá trị tuyệt đối một cách tự tin và hiệu quả.