Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán 11 THPT Quốc gia 2020 lần 1 trường Ngô Quyền Hải Phòng

Chủ Nhật ngày 29 tháng 12 năm 2019, trường THPT Ngô Quyền – Hải Phòng tổ chức kỳ thi thử Trung học Phổ thông Quốc gia năm 2020 môn Toán 11 lần thứ nhất năm học 2019 – 2020. Đề thi thử Toán 11 THPT Quốc gia 2020 lần 1 trường Ngô Quyền – Hải Phòng mã đề 111 gồm có 06 trang với 50 câu trắc nghiệm, học sinh có 90 phút để làm bài thi. Trích dẫn đề thi thử Toán 11 THPT Quốc gia 2020 lần 1 trường Ngô Quyền – Hải Phòng : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, O là giao điểm hai đường chéo AC và BD. Gọi I, J, K lần lượt là trung điểm các cạnh BC, AD, SC và H là một điểm trên cạnh BC, H không trùng với B. Gọi d là giao tuyến của hai mặt phẳng (SAH) và (IJK). Tìm mệnh đề sai trong các mệnh đề sau: A. d đi qua giao điểm của AH và KI đồng thời d song song với KO. B. d đi qua giao điểm của AH và IJ đồng thời d song song với SA. C. d đi qua giao điểm của AH và IJ đồng thời d song song với KO. D. d đi qua giao điểm của SH và IK đồng thời d song song với SA. + Mệnh đề nào sau đây đúng? A. Qua ba điểm xác định một và chỉ một mặt phẳng. B. Qua ba điểm phân biệt không thẳng hàng xác định một và chỉ một mặt phẳng. C. Qua ba điểm phân biệt xác định một và chỉ một mặt phẳng. D. Qua ba điểm phân biệt không thẳng hàng xác định hai mặt phẳng phân biệt. [ads] + Một nhân viên được nhận vào làm việc ở tập đoàn S với mức lương 10.000.000 VND/tháng và thỏa thuận nếu hoàn thành tốt công việc thì sau một quý (3 tháng) công ty sẽ tăng cho anh thêm 500.000 VND/tháng. Hỏi sau ít nhất bao nhiêu năm thì lương của anh ta sẽ được trên 20.000.000 VND/tháng (giả thiết: nhân viên đó luôn hoàn thành tốt công việc). + Một dãy phố có bảy cửa hàng bán đồ lưu niệm. Có bảy khách hàng, mỗi người chọn vào một trong bảy cửa hàng đó một cách ngẫu nhiên. Tính xác suất để một cửa hàng có một khách vào, một cửa hàng có hai khách vào, một cửa hàng có bốn khách vào và bốn cửa hàng còn lại không có người khách nào vào. + Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, đáy nhỏ AB = n, đáy lớn CD = m (m, n là các số thực dương, m > n). Các cạnh bên thỏa mãn SA = SB, SC = SD. Gọi O là giao điểm hai đường chéo AC và BD. Lấy điểm I trên đoạn SO sao cho IS/IO = k. Gọi (alpha) là mặt phẳng đi qua AI và song song với CD. Tìm điều kiện của k để thiết diện của hình chóp S.ABCD với mặt phẳng (alpha) là một hình chữ nhật.

Nguồn: toanmath.com

Đọc Sách

Đề thi khảo sát lớp 11 môn Toán lần 2 năm 2018 2019 trường THPT Nhã Nam Bắc Giang
Nội dung Đề thi khảo sát lớp 11 môn Toán lần 2 năm 2018 2019 trường THPT Nhã Nam Bắc Giang Bản PDF Đề thi khảo sát Toán lớp 11 lần 2 năm 2018 – 2019 trường THPT Nhã Nam – Bắc Giang gồm 4 trang với 25 câu hỏi trắc nghiệm khách quan và 4 bài toán tự luận, yêu cầu học sinh hoàn thành bài làm trong 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi khảo sát Toán lớp 11 lần 2 năm 2018 – 2019 trường THPT Nhã Nam – Bắc Giang : + Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm các cạnh AB và AC, E là điểm trên cạnh CD với ED = 3EC. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD là? A. Tam giác MNE. B. Tứ giác MNEF với F là điểm bất kì trên cạnh BD. C. Hình bình hành MNEF với F là điểm trên cạnh BD mà EF // BC. D. Hình thang MNEF với F là điểm trên cạnh BD mà EF // BC. + Cho hình chóp S.ABCD có đáy là hình thang ABCD (AB//CD). Khẳng định nào sau đây sai? A. Hình chóp S.ABCD có 4 mặt bên. B. Giao tuyến của hai mặt phẳng (SAC) và (SBD) là SO (O là giao điểm của AC và BD). C. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là SI (I là giao điểm của AD và BC). D. Giao tuyến của hai mặt phẳng (SAB) và (SAD) là đường trung bình của ABCD. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, K lần lượt là trung điểm của CD, CB, SA. Gọi E là giao điểm của SO và (MNK). Hãy chọn cách xác định điểm E đúng nhất? A. E là giao điểm của SO với KH. B. E là giao điểm của SO với KN. C. E là giao điểm của SO với KM. D. E là giao điểm của SO với MN. File WORD (dành cho quý thầy, cô):
Đề thi thử lớp 11 môn Toán lần 1 năm 2018 trường THPT chuyên Quang Trung Bình Phước
Nội dung Đề thi thử lớp 11 môn Toán lần 1 năm 2018 trường THPT chuyên Quang Trung Bình Phước Bản PDF Đề thi thử Toán lớp 11 lần 1 năm 2018 trường THPT chuyên Quang Trung – Bình Phước mã đề 111 được biên soạn nhằm giúp các em học sinh khối 11 được sớm làm quen và thử sức với kỳ thi tương tự như thi THPT Quốc gia môn Toán, kỳ thi được diễn ra vào ngày 26 tháng 11 năm 2018, đề thi gồm 05 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan thuộc các chủ đề Toán lớp 11 đã học, cùng một số ít các câu hỏi thuộc nội dung Toán lớp 10. Trích dẫn đề thi thử Toán lớp 11 lần 1 năm 2018 trường THPT chuyên Quang Trung – Bình Phước : + Cho hai người A và B xuất phát cùng một lúc đi ngược chiều nhau từ các thành phố M và N. Khi họ gặp nhau, người ta nhận thấy A đã đi nhiều hơn B 6 km. Nếu mỗi người tiếp tục đi theo hướng cũ với cùng vận tốc ban đầu thì A sẽ đến N sau 4,5 giờ, còn B đến M sau 8 giờ tính từ thời điểm họ gặp nhau. Gọi vA, vB lần lượt là vận tốc của người A và người B. Tính tổng vA + vB. +  Một nông dân định trồng đậu và cà trên diện tích 8 ha trong vụ Đông Xuân. Nếu trồng đậu thì cần 20 công và thu 3 triệu đồng trên diện tích mỗi ha. Nếu trồng cà thì cần 30 công và thu 4 triệu đồng trên diện tích mỗi ha. Hỏi cần trồng mỗi loại cây trên với diện tích bao nhiêu để thu được nhiều tiền nhất, biết rằng tổng số công không quá 180. [ads] + Cho hình chóp S.ABCD có đáy là hình bình hành. M, N lần lượt thuộc đoạn AB, SC. Khẳng định nào sau đây đúng? A. Giao điểm của MN và (SBD) là giao điểm của MN và SB. B. Đường thẳng MN không cắt mặt phẳng (SBD). C. Giao điểm của MN và (SBD) là giao điểm của MN và SI, trong đó I là giao điểm của CM và BD. D. Giao điểm của MN và (SBD) là giao điểm của MN và BD.
Đề thi KSCL lớp 11 môn Toán lần 1 năm 2018 2019 trường Yên Lạc 2 Vĩnh Phúc
Nội dung Đề thi KSCL lớp 11 môn Toán lần 1 năm 2018 2019 trường Yên Lạc 2 Vĩnh Phúc Bản PDF Sytu giới thiệu đến quý thầy, cô và các em học sinh lớp 11 đề thi KSCL Toán lớp 11 lần 1 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc, kỳ thi được tổ chức vào ngày 12 tháng 11 năm 2018 nhằm khảo sát chất lượng môn Toán đối với học sinh khối 11 để giáo viên và nhà trường nắm được chất lượng học tập, lấy điểm để xếp loại học lực, tuyển chọn HSG Toán lớp 11 … đề thi có đáp án. Trích dẫn đề thi KSCL Toán lớp 11 lần 1 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc : + Khẳng định nào sau đây sai. A. Phép quay biến góc thành góc bằng nó. B. Phép tịnh tiến biến đoạn thẳng thành đoạn thẳng bằng nó. C. Phép vị tự biến đường tròn thành đường tròn có cùng bán kính . D. Phép đối xứng trục biến tam giác thành tam giác bằng nó. [ads] + Đội ca khúc chính trị của trường THPT Yên lạc 2, Vĩnh Phúc gồm có 4 học sinh khối 12, có 3 học sinh khối 11 và 2 học sinh khối 10. Chọn ngẫu nhiên 5 học sinh để biểu diễn tiết mục văn nghệ chào mừng ngày 20/11. Hỏi có bao nhiêu cách chọn sao cho khối nào cũng có học sinh được chọn. + Số giờ có ánh sáng của một thành phố X ở vĩ độ 40 độ bắc trong ngày thứ t của một năm không nhuận được cho bởi hàm số: d(t) = 3sin[pi/182(t – 80)] + 12, t thuộc Z và 0 ≤ t ≤ 365. Vào ngày nào trong năm thì thành phố X có nhiều giờ ánh sáng nhất? File WORD (dành cho quý thầy, cô):
Đề thi thử THPTQG lớp 11 môn Toán năm 2018 2019 lần 1 trường Ngô Sĩ Liên Bắc Giang
Nội dung Đề thi thử THPTQG lớp 11 môn Toán năm 2018 2019 lần 1 trường Ngô Sĩ Liên Bắc Giang Bản PDF Đề thi thử THPTQG Toán lớp 11 năm 2018 – 2019 lần 1 trường Ngô Sĩ Liên – Bắc Giang mã đề 269 gồm 5 trang, đề được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, kỳ thi nhằm kiểm tra chất lượng môn Toán giữa học kỳ 1 đối với học sinh khối 11, đồng thời định hướng cho các em ôn tập kỳ thi Trung học Phổ thông Quốc gia môn Toán từ sớm, đề thi có đáp án. Trích dẫn đề thi thử THPTQG Toán lớp 11 năm 2018 – 2019 lần 1 trường Ngô Sĩ Liên – Bắc Giang : + Cho hàm số f(x) = ((tanx)^2018 + 2018)/(cosx)^2017. Xét các mệnh đề sau: 1) Hàm số đã cho xác định trên D = R. 2) Đồ thị hàm số đã cho có Oy là trục đối xứng. 3) Hàm số đã cho là hàm số chẵn. 4) Đồ thị hàm số đã cho có tâm đối xứng là gốc tọa độ O. 5) Hàm số đã cho là hàm số lẻ. 6) Hàm số đã cho là hàm số không chẵn, không lẻ. Số mệnh đề đúng trong 6 mệnh đề trên là? [ads] + Cho tam giác nhọn ABC. Các điểm M, N, P lần lượt nằm trên các cạnh BC, CA, AB. Chu vi tam giác MNP nhỏ nhất khi các điểm M, N, P: A. là chân đường phân giác trong của tam giác ABC. B. là chân đường trung tuyến trong của tam giác ABC. C. là tiếp điểm của đường tròn nội tiếp tam giác ABC với các cạnh của nó. D. là chân đường cao của tam giác ABC. + Công ty bất động sản X có 50 căn hộ cho thuê. Biết rằng nếu cho thuê mỗi căn hộ với giá 2000.000 đồng/tháng thì mọi căn hộ đều có người thuê, còn nếu tăng giá cho thuê mỗi căn hộ thêm 100.000 đồng/tháng thì sẽ có 1 căn hộ bị bỏ trống. Để có thu nhập cao nhất thì công ty phải cho thuê mỗi căn hộ với giá là? File WORD (dành cho quý thầy, cô):