Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Bến Tre

Nội dung Đề thi chọn học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Bến Tre Bản PDF - Nội dung bài viết Đề thi chọn học sinh giỏi lớp 9 môn Toán năm 2022-2023 tại Bến Tre Đề thi chọn học sinh giỏi lớp 9 môn Toán năm 2022-2023 tại Bến Tre Sytu xin gửi đến quý thầy cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán năm học 2022-2023 do Phòng Giáo dục và Đào tạo thành phố Bến Tre tổ chức. Đề thi bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài là 150 phút. Kỳ thi sẽ diễn ra vào ngày ... tháng 12 năm 2022. Đây là một số câu hỏi trong đề thi: Bài 1: Cho biểu thức A = ... a) Chứng minh rằng A > 4. b) Tìm các giá trị của a để biểu thức 6/A nhận giá trị nguyên. Bài 2: Tìm tất cả các số tự nhiên n sao cho biểu thức B = n(n + 1)(n + 2)/6 + 1 là số nguyên tố. Bài 3: Cho tam giác ABC có ba góc nhọn và ba đường cao AK, BD, CE cắt nhau tại H. a) Chứng minh BH.BD = BC.BK và BH.BD + CH.CE = BC². b) Chứng minh BH = AC.cotABC. c) Gọi M là trung điểm của BC. Đường thẳng qua A và vuông góc với AM cắt BD, CE lần lượt tại Q, P. Chứng minh rằng MP = MQ. Hy vọng rằng đề thi sẽ là cơ hội để các em học sinh thể hiện khả năng và kiến thức của mình trong môn Toán. Chúc các em thi tốt!

Nguồn: sytu.vn

Đọc Sách

Đề Olympic Toán 9 lần 1 năm 2023 - 2024 trường THPT chuyên Lê Quý Đôn - Điện Biên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi Olympic môn Toán 9 lần thứ nhất năm học 2023 – 2024 trường THPT chuyên Lê Quý Đôn, tỉnh Điện Biên; kỳ thi được diễn ra vào ngày 21 tháng 04 năm 2024. Trích dẫn Đề Olympic Toán 9 lần 1 năm 2023 – 2024 trường THPT chuyên Lê Quý Đôn – Điện Biên : + Cho phương trình: x2 + mx + 2m – 7 = 0 (1) (ẩn x) với m là tham số nguyên. a) Chứng minh phương trình (1) luôn có hai nghiệm phân biệt x1, x2; tìm m để 9×1 = x22. b) Chứng minh rằng m là số nguyên lẻ thì phương trình (1) không có nghiệm hữu tỉ. + Cho tam giác nhọn ABC (AB < AC), ba đường cao AD, BE, CF cắt nhau tại H. Gọi I là giao điểm của EF và AH. Đường thẳng qua I và song song với BC cắt AB, BE lần lượt tại P và Q. a) Chứng minh AEF ~ ABC. b) Chứng minh IP = IQ. c) Gọi M là trung điểm của AH. Chứng minh I là trực tâm của tam giác BMC.
Đề học sinh giỏi Toán 9 cấp tỉnh năm 2023 - 2024 sở GDĐT Bà Rịa - Vũng Tàu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào ngày 16 tháng 04 năm 2024.
Đề học sinh giỏi Toán 9 cấp tỉnh năm 2023 - 2024 sở GDĐT Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bạc Liêu; kỳ thi được diễn ra vào ngày 07 tháng 04 năm 2024.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 - 2024 sở GDĐT Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 – 2024 sở GD&ĐT Quảng Nam : + Cho tam giác nhọn ABC (AB < AC) có ba đường cao AD, BE, CF đồng quy tại H. Đường tròn đường kính AC cắt đoạn thẳng BH tại M. Trên đoạn thẳng HC lấy điểm N sao cho AM = AN. a) Chứng minh EB.EH = ED.EF. b) Chứng minh N thuộc đường tròn ngoại tiếp tam giác ABD. + Cho tam giác nhọn ABC (AB < AC) có hai đường cao AE, BD cắt nhau tại H. Đường trung trực của đoạn thẳng DH cắt AE tại M, cắt đường tròn ngoại tiếp tam giác BCD tại P và Q (P nằm giữa M và Q). a) Chứng minh MD là tiếp tuyến của đường tròn ngoại tiếp tam giác BCD. b) Chứng minh APM + AQM = CBD. c) Đường thẳng AQ cắt đường tròn ngoại tiếp tam giác BCD tại F (F khác Q). Chứng minh APB = FPB. + Cho p là số nguyên tố. Tìm tất cả các số nguyên dương b sao cho nghiệm của phương trình bậc hai x2 – bx + bp = 0 là số nguyên.