Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập 55 đề ôn thi TN THPT môn Toán các sở và trường chuyên năm 2023

Tài liệu gồm 1213 trang, được tổng hợp bởi thầy giáo Đặng Việt Đông, tuyển tập 55 đề ôn thi tốt nghiệp THPT môn Toán của các sở GD&ĐT và các trường THPT chuyên năm học 2022 – 2023, có đáp án và lời giải chi tiết. 1 Sở Giáo Dục Ninh Bình – Lần 2. 2 Chuyên KHTN Hà Nội – Lần 1. 3 Chuyên Hạ Long – Lần 1. 4 Sở Giáo Dục Bắc Ninh – Lần 1. 5 Sở Giáo Dục Bắc Giang – Lần 1. 6 Sở Giáo Dục Hà Nội – Lần 1. 7 Sở Giáo Dục Hòa Bình – Lần 1. 8 Sở Giáo Dục Bình Phước – Lần 1. 9 Sở Giáo Dục Yên Bái – Lần 1. 10 Sở Giáo Dục Đak Nông. 11 Sở Giáo Dục Sơn La – Lần 1. 12 Chuyên Hùng Vương Gia Lai. 13 Sở Giáo Dục Yên Bái – Lần 2. 14 Sở Giáo Dục Hà Tĩnh – Lần 1. 15 Sở Giáo Dục Hưng Yên – Lần 1. 16 Sở Giáo Dục Hoà Bình – Lần 2. 17 Sở Giáo Dục Hà Tĩnh – Lần 2. 18 Liên Trường – Quảng Nam. 19 Liên Trường Nghệ An. 20 Chuyên Đh Vinh – Lần 1. 21 Liên Trường Nghệ An – Lần 2. 22 Sở Giáo Dục Thái Nguyên – Lần 1. 23 Sở Giáo Dục Thái Nguyên – Lần 2. 24 Sở Giáo Dục Nam Định. 25 Sở Giáo Dục Nghệ An. 26 Sở Giáo Dục Phú Thọ – Lần 1. 27 Sở Giáo Dục Vĩnh Phúc – Lần 1. 28 Chuyên Hạ Long – Lần 2. 29 Sở Giáo Dục Yên Bái – Lần 1. 30 Chuyên Lê Khiết Quảng Ngãi – Lần 1. 31 Liên Trường Bắc Ninh. 32 Sở Giáo Dục Hà Nam. 33 Sở Giáo Dục Lào Cai – Lần 1. 34 Sở Giáo Dục Thái Nguyên – Lần 2. 35 Sở Giáo Dục Thanh Hóa – Lần 2. 36 Chuyên Biên Hòa Hà Nam. 37 Sở Giáo Dục Vĩnh Phúc – Lần 2. 38 Chuyên Lương Văn Chánh Phú Yên – Lần 1. 39 Sở Giáo Dục Lạng Sơn – Lần 2. 40 Chuyên Nguyễn Quang Diệu Đồng Tháp. 41 Sở Giáo Dục Hải – Phòng – Lần 1. 42 Chuyên Thái Bình – Lần 4. 43 Chuyên Lê Thánh Tông Quảng Nam. 44 Sở Giáo Dục Bình Phước – Lần 2. 45 Sở Giáo Dục Phú Thọ – Lần 2. 46 Sở Giáo Dục Cần Thơ (Mã 101). 47 Sở Giáo Dục Quảng Bình – Lần 2. 48 Sở Giáo Dục Hoà Bình – Lần 4. 49 Sở Giáo Dục Bình Thuận. 50 Sở Giáo Dục Hải Dương. 51 Sở Giáo Dục Kiên Giang. 52 Sở Giáo Dục Kom Tum. 53 Liên Trường Hà Nội. 54 Liên Trường Đắk Lắk. 55 Sở Giáo Dục Hải – Phòng – Lần 2.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2021 lần 2 môn Toán trường Lý Thái Tổ - Bắc Ninh
Chủ Nhật ngày 28 tháng 03 năm 2021, trường THPT Lý Thái Tổ, thị xã Từ Sơn, tỉnh Bắc Ninh tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021 lần thứ hai. Đề thi thử tốt nghiệp THPT 2021 lần 2 môn Toán trường Lý Thái Tổ – Bắc Ninh mã đề 132 được biên soạn theo dạng đề thi trắc nghiệm, đề gồm 06 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian phát đề), đề thi có đáp án mã đề 132, 209, 357, 485, 570, 628, 743, 896. Trích dẫn đề thi thử tốt nghiệp THPT 2021 lần 2 môn Toán trường Lý Thái Tổ – Bắc Ninh : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD), góc giữa SC và mặt phẳng (SAB) bằng 30 độ. (a) là mặt phẳng đi qua A và vuông góc với SC, (a) cắt các cạnh SB, SC, SD lần lượt tại B’, C’, D’. Xét hình nón có đỉnh nằm trong mặt phẳng (ABCD) và đường tròn đáy đi qua ba điểm B’, C’, D’. Tính diện tích xung quanh của hình nón đã cho. + Trong không gian với hệ tọa độ Oxyz, cho điểm I(1;0;0), mặt phẳng (P): x – 2y – 2z + 1 = 0 và đường thẳng d. Gọi d’ là đường thẳng đi qua điểm I và vuông góc với mặt phẳng (P), M là hình chiếu vuông góc của I trên mặt phẳng (P), N(a;b;c) là điểm thuộc đường thẳng d sao cho diện tích tam giác IMN nhỏ nhất. Khi đó a – 2b + 4c có giá trị bằng? + Cho hàm số y = f(x) liên tục trên R có đồ thị (C) cắt trục Ox tại 3 điểm có hoành độ lần lượt là a, b, c (a < b < c). Biết phần hình phẳng nằm phía trên trục Ox giới hạn bởi đồ thị (C) và trục Ox có diện tích là S1 = 3/5, phần hình phẳng nằm phía dưới trục Ox giới hạn bởi đồ thị (C) và trục Ox có diện tích là S2 = 2 (như hình vẽ). Tính I.
Đề thi thử Toán tốt nghiệp THPT 2021 trường Đặng Thúc Hứa - Nghệ An
Chủ Nhật ngày 28 tháng 03 năm 2021, trường THPT Đặng Thúc Hứa, huyện Thanh Chương, tỉnh Nghệ An tổ chức kỳ thi thử tốt nghiệp THPT môn Toán năm học 2020 – 2021. Đề thi thử Toán tốt nghiệp THPT 2021 trường Đặng Thúc Hứa – Nghệ An mã đề 147 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút.
Đề thi thử THPT Quốc gia 2021 môn Toán lần 2 trường THPT Kim Liên - Hà Nội
Đề thi thử THPT Quốc gia 2021 môn Toán lần 2 trường THPT Kim Liên – Hà Nội gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 001, 002, 003, 004; kỳ thi được diễn ra vào Chủ Nhật ngày 28 tháng 03 năm 2021. Trích dẫn đề thi thử THPT Quốc gia 2021 môn Toán lần 2 trường THPT Kim Liên – Hà Nội : + Một bạn sinh viên muốn có một khoản tiền để mua xe máy làm phương tiện đi làm sau khi ra trường. Bạn lên kế hoạch làm thêm và gửi tiết kiệm trong 2 năm cuối đại học. Vào mỗi đầu tháng bạn đều đặn gửi vào ngân hàng một khoản tiền T (đồng) theo hình thức lãi kép với lãi suất 0,56% mỗi tháng. Biết đến cuối tháng thứ 24 thì bạn đó có số tiền là 30 triệu đồng. Hỏi số tiền T gần với số tiền nào nhất trong các số sau? + Cho hai đường thẳng x’x, y’y chéo nhau và vuông góc với nhau. Trên x’x lấy cố định điểm A, trên y’y lấy cố định điểm B sao cho AB cùng vuông góc với Ax, By và AB = 2020cm. Gọi C, D là hai điểm lần lượt di chuyển trên hai tia Ax, By sao cho AC + BD = CD. Hỏi bán kính R của mặt cầu (S) ngoại tiếp tứ diện ABCD có giá trị nhỏ nhất thuộc khoảng nào sau đây? + Cho đường thẳng y = 2x và Parabol y = x2 + c (c là tham số thực dương). Gọi S1 và S2 lần lượt là diện tích của hai hình phẳng được gạch chéo trong hình vẽ bên. Khi S1 = S2 thì c gần với số nào nhất sau đây?
Đề thi thử TNTHPT 2021 môn Toán trường Nguyễn Tất Thành - Hà Nội
Ngày … tháng 03 năm 2021, trường THCS & THPT Nguyễn Tất Thành, Đại học Sư phạm Hà Nội tổ chức kiểm tra khảo sát thi tốt nghiệp THPT môn Toán năm học 2020 – 2021. Đề thi thử TNTHPT 2021 môn Toán trường Nguyễn Tất Thành – Hà Nội mã đề 101 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 101, 102, 103, 104. Trích dẫn đề thi thử TNTHPT 2021 môn Toán trường Nguyễn Tất Thành – Hà Nội : + Một khu rừng có trữ lượng gỗ là 7.106 mét khối. Biết tốc độ sinh trưởng của các cây trong khu rừng đó là 4% mỗi năm. Nếu hàng năm không khai thác thì sau 6 năm khu rừng đó có bao nhiêu mét khối gỗ? + Trong không gian tọa độ Oxyz cho ba điểm A(1; 0; 2), B(2; 3; −1), C(0; 3; 2) và mặt phẳng (P) : x − 2y + 2z − 7 = 0. Khi điểm M thay đổi trên mặt phẳng (P), hãy tìm giá trị nhỏ nhất của biểu thức E = |MA + MB + MC|. + Trong mặt phẳng tọa độ Oxy cho hàm số y = (2x + 2)/(x − 1) có đồ thị (C) và đường thẳng d : y = −x + m (m là tham số). Tìm m để đường thẳng d cắt đồ thị (C) tại hai điểm phân biệt.