Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề các phương pháp tính tích phân - Nguyễn Duy Khôi

Ngày nay phép tính vi tích phân chiếm một vị trí hết sức quan trọng trong Toán học, tích phân được ứng dụng rộng rãi như để tính diện tích hình phẳng, thể tích khối tròn xoay, nó còn là đối tượng nghiên cứu của giải tích, là nền tảng cho lý thuyết hàm, lý thuyết phương trình vi phân, phương trình đạo hàm riêng… Ngoài ra phép tính tích phân còn được ứng dụng rộng rãi trong Xác suất, Thống kê, Vật lý, Cơ học, Thiên văn học, Y học … Phép tính tích phân được bắt đầu giới thiệu cho các em học sinh ở lớp 12, tiếp theo được phổ biến trong tất cả các trường đại học cho khối sinh viên năm thứ nhất và năm thứ hai trong chương trình học đại cương. Hơn nữa trong các kỳ thi Tốt nghiệp THPT và kỳ thi Tuyển sinh đại học phép tính tích phân hầu như luôn có trong các đề thi môn Toán của khối A, khối B và cả khối D. Bên cạnh đó, phép tính tích phân cũng là một trong những nội dung để thi tuyển sinh đầu vào hệ Thạc sĩ và nghiên cứu sinh. [ads] Với tầm quan trọng của phép tính tích phân, chính vì thế mà tôi viết một số kinh nghiệm giảng dạy tính tích phân của khối 12 với chuyên đề “TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP PHÂN TÍCH – ĐỔI BIẾN SỐ VÀ TỪNG PHẦN” để phần nào củng cố, nâng cao cho các em học sinh khối 12 để các em đạt kết quả cao trong kỳ thi Tốt nghiệp THPT và kỳ thi Tuyển sinh đại học và giúp cho các em có nền tảng trong những năm học đại cương của đại học. Trong phần nội dung chuyên đề dưới đây, tôi xin được nêu ra một số bài tập minh họa cơ bản tính tích phân chủ yếu áp dụng phương pháp phân tích, phương pháp đổi biến số, phương pháp tích phân từng phần. Các bài tập đề nghị là các đề thi Tốt nghiệp THPT và đề thi tuyển sinh đại học Cao đẳng của các năm để các em học sinh rèn luyện kỹ năng tính tích phân và phần cuối của chuyên đề là một số câu hỏi trắc nghiệm tích phân. Tuy nhiên với kinh nghiệm còn hạn chế nên dù có nhiều cố gắng nhưng khi trình bày chuyên đề này sẽ không tránh khỏi những thiếu sót, rất mong được sự góp ý chân tình của quý Thầy Cô trong Hội đồng bộ môn Toán Sở Giáo dục và đào tạo tỉnh Đồng Nai. Nhân dịp này tôi xin cảm ơn Ban lãnh đạo nhà trường tạo điều kiện tốt cho tôi và cảm ơn quý thầy cô trong tổ Toán trường Nam Hà, các đồng nghiệp, bạn bè đã đóng góp ý kiến cho tôi hoàn thành chuyên đề này. Tôi xin chân thành cám ơn.

Nguồn: toanmath.com

Đọc Sách

Nắm trọn chuyên đề mũ - logarit và tích phân
Cuốn sách gồm 455 trang, được biên soạn bởi nhóm tác giả Tư Duy Toán Học 4.0: Phan Nhật Linh, Nguyễn Duy Hiếu, Nguyễn Khánh Linh, Lê Huy Long, tóm tắt toàn bộ lý thuyết và phương pháp giải các dạng toán, các ví dụ minh họa và bài tập rèn luyện từ cơ bản đến nâng cao chuyên đề mũ – logarit và tích phân, giúp các em hoàn thiện kiến thức, rèn tư duy và rèn luyện tốc độ làm bài; tất cả các bài tập trong sách đều có giải chi tiết 100% tiện lợi cho việc so sánh đáp án và tra cứu thông tin. Mục lục cuốn sách nắm trọn chuyên đề mũ – logarit và tích phân: PHẦN I . MŨ VÀ LOGARIT. CHỦ ĐỀ 1. MỞ ĐẦU VỀ LŨY THỪA. Dạng 1. Tính, rút gọn, so sánh các số liên quan đến lũy thừa. CHỦ ĐỀ 2. MŨ – LOGARIT. Dạng 1. Biến đổi mũ – logarit. CHỦ ĐỀ 3. HÀM SỐ LŨY THỪA, MŨ VÀ LOGARIT. Dạng 1. Bài tập về hàm số lũy thừa, hàm số mũ và hàm số logarit. CHỦ ĐỀ 4. PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LOGARIT. Dạng 1. Bài tập về phương trình mũ, phương trình logarit số 01. Dạng 2. Bài tập về phương trình mũ, phương trình logarit số 02. Dạng 3. Bài tập về phương trình mũ, phương trình logarit chứa tham số 01. Dạng 4. Bài tập về phương trình mũ, phương trình logarit chứa tham số 02. CHỦ ĐỀ 5. BPT MŨ – BPT LOGARIT. Dạng 1. Biện luận nghiệm của phương trình mũ – logarit. Dạng toán tìm GTLN và GTNN của hàm số mũ – logarit. Dạng toán liên quan đến hàm đặc trưng. Dạng toán tìm cặp số nguyên thỏa mãn điều kiện. Dạng toán lãi suất. Dạng toán thực tế liên quan đến sự tang trưởng. Dạng toán thường xuất hiện trong đề thi của Bộ GD&ĐT. PHẦN II . NGUYÊN HÀM – TÍCH PHÂN. CHỦ ĐỀ 1. NGUYÊN HÀM. Dạng 1. Phương pháp tính nguyên hàm. CHỦ ĐỀ 2. TÍCH PHÂN. Dạng 1. Phương pháp tính tích phân. Dạng 2. Tích phân cho bởi nhiều hàm. Dạng 3. Tích phân hàm ẩn phần 1. Dạng 3. Tích phân hàm ẩn phần 2. Dạng 4. Ứng dụng tích phân tính diện tích, thể tích. Dạng 5. Tích phân trong đề thi của Bộ GD&ĐT.
Tổng ôn tập TN THPT 2021 môn Toán Nguyên hàm, tích phân và ứng dụng
Tài liệu gồm 163 trang, được tổng hợp bởi thầy giáo Nguyễn Bảo Vương, tuyển tập câu hỏi và bài tập trắc nghiệm chuyên đề nguyên hàm, tích phân và ứng dụng, có đáp án và lời giải chi tiết. Các câu hỏi và bài tập được trích từ các đề thi thử tốt nghiệp THPT năm 2021 môn Toán của các trường THPT và sở GD&ĐT trên cả nước, với mục đích giúp các em học sinh rèn luyện, rà soát kiến thức chủ đề Giải tích 12 chương 3, trước khi bước vào kỳ thi tốt nghiệp THPT 2021 môn Toán và các kỳ thi tuyển sinh Đại học – Cao đẳng. Mục lục tài liệu tổng ôn tập TN THPT 2021 môn Toán: Nguyên hàm, tích phân và ứng dụng: 1. Mức độ nhận biết: 105 câu. + Câu hỏi và bài tập (Trang 01). + Đáp án và lời giải chi tiết (Trang 15). 2. Mức độ thông hiểu: 94 câu. + Câu hỏi và bài tập (Trang 37). + Đáp án và lời giải chi tiết (Trang 50). 3. Mức độ vận dụng thấp: 57 câu. + Câu hỏi và bài tập (Trang 78). + Đáp án và lời giải chi tiết (Trang 89). 4. Mức độ vận dụng cao: 52 câu. + Câu hỏi và bài tập (Trang 115). + Đáp án và lời giải chi tiết (Trang 126). Xem thêm : + Tổng ôn tập TN THPT 2021 môn Toán: Ứng dụng đạo hàm và khảo sát hàm số + Tổng ôn tập TN THPT 2021 môn Toán: Hàm số lũy thừa – mũ – logarit
5 dạng toán ứng dụng của tích phân thường gặp
Tài liệu gồm 124 trang, được tổng hợp bởi thầy giáo Hoàng Tuyên và thầy giáo Lê Minh Tâm, tuyển chọn các dạng bài tập ứng dụng của tích phân thường gặp trong chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng). Các bài tập ứng dụng của tích phân được phân chia thành 5 dạng toán: DẠNG TOÁN 1 . ỨNG DỤNG CỦA TÍCH PHÂN TÍNH DIỆN TÍCH HÌNH PHẲNG. Dạng 1.1. Ứng dụng của tích phân tính diện tích hình phẳng (không có điều kiện). Dạng 1.2. Ứng dụng của tích phân tính diện tích hình phẳng (có điều kiện). DẠNG TOÁN 2 . ỨNG DỤNG CỦA TÍCH PHÂN TÍNH THỂ TÍCH KHỐI TRÒN XOAY. Dạng 2.1. Ứng dụng của tích phân tính thể tích khối tròn xoay (không có điều kiện). Dạng 2.2. Ứng dụng của tích phân tính thể tích khối tròn xoay (có điều kiện). DẠNG TOÁN 3 . ỨNG DỤNG CỦA TÍCH PHÂN ĐỂ GIẢI BÀI TOÁN CHUYỂN ĐỘNG. Dạng 3.1. Bài toán cho biết hàm số của vận tốc, quãng đường của chuyển động. Dạng 3.2. Bài toán cho biết đồ thị của vận tốc, quãng đường của chuyển động. DẠNG TOÁN 4 . ỨNG DỤNG CỦA TÍCH PHÂN ĐỂ GIẢI MỘT SỐ BÀI TOÁN THỰC TẾ. Dạng 4.1. Bài toán liên quan đến diện tích. Dạng 4.2. Bài toán liên quan đến thể tích. DẠNG TOÁN 5 . ỨNG DỤNG CỦA TÍCH PHÂN ĐỂ GIẢI MỘT SỐ BÀI TOÁN ĐẠI SỐ.
Ứng dụng tích phân trong các bài toán thực tế
Tài liệu gồm 77 trang, tuyển chọn và hướng dẫn giải các câu hỏi và bài toán trắc nghiệm chủ đề ứng dụng tích phân trong các bài toán thực tế, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng) và ôn thi tốt nghiệp THPT Quốc gia môn Toán năm học 2020 – 2021. Mục lục tài liệu ứng dụng tích phân trong các bài toán thực tế: A. Bài toán thực tế về vận tốc quãng đường (Trang 3). B. Bài toán thực tế về diện tích (Trang 23). C. Bài toán thực tế về thể tích (Trang 51).