Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề nguyên hàm, tích phân và ứng dụng ôn thi THPT 2021 - Nguyễn Bảo Vương

Tài liệu gồm 521 trang, được biên soạn bởi thầy giáo Nguyễn Bảo Vương, hướng dẫn phương pháp giải các dạng toán và tuyển chọn các bài tập trắc nghiệm chuyên đề nguyên hàm, tích phân và ứng dụng (Giải tích 12 chương 3), có đáp án và lời giải chi tiết, giúp học sinh học tốt chương trình Toán 12 và ôn thi THPT môn Toán năm học 2020 – 2021. CHUYÊN ĐỀ 1 . NGUYÊN HÀM VÀ MỘT SỐ PHƯƠNG PHÁP TÌM NGUYÊN HÀM. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (Mức độ 5 – 6 điểm). + Dạng toán. Nguyên hàm cơ bản. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (Mức độ 7 – 8 điểm). + Dạng toán 1. Nguyên hàm cơ bản có điều kiện. + Dạng toán 2. Tìm nguyên hàm bằng phương pháp đổi biến số. + Dạng toán 3. Nguyên hàm của hàm số hữu tỉ. + Dạng toán 4. Nguyên hàm từng phần. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (Mức độ 9 – 10 điểm). + Dạng toán 1. Nguyên hàm của hàm ẩn hoặc liên quan đến phương trình f(x), f'(x), f”(x). + Dạng toán 2. Một số bài toán khác liên quan đến nguyên hàm. CHUYÊN ĐỀ 2 . TÍCH PHÂN VÀ MỘT SỐ PHƯƠNG PHÁP TÍNH TÍCH PHÂN. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (Mức độ 5 – 6 điểm). + Dạng toán. Sử dụng tính chất, bảng nguyên hàm cơ bản để tính tích phân. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (Mức độ 7 – 8 điểm). + Dạng toán 1. Tích phân cơ bản có điều kiện. + Dạng toán 2. Tích phân hàm số hữu tỷ. + Dạng toán 3. Tích phân đổi biến. + Dạng toán 4. Tích phân từng phần. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (Mức độ 9 – 10 điểm). + Dạng toán 1. Tích phân hàm ẩn. + Dạng toán 2. Tích phân một số hàm đặc biệt. CHUYÊN ĐỀ 3 . ỨNG DỤNG CỦA TÍCH PHÂN. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (Mức độ 5 – 6 điểm). + Dạng toán 1. Ứng dụng tích phân để tìm diện tích. + Dạng toán 2. Ứng dụng tích phân để tìm thể tích. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (Mức độ 7 – 8 điểm). + Dạng toán 1. Ứng dụng tích phân để tìm diện tích. + Dạng toán 2. Ứng dụng tích phân để tìm thể tích. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (Mức độ 9 – 10 điểm). + Dạng toán 1. Ứng dụng tích phân để giải bài toán chuyển động. + Dạng toán 2. Ứng dụng tích phân để giải một số bài toán thực tế. + Dạng toán 3. Ứng dụng tích phân để giải quyết một số bài toán đại số.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm ứng dụng tích phân tính diện tích
Tài liệu gồm 45 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề ứng dụng tích phân tính diện tích, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. A. LÝ THUYẾT. 1. Công thức tính diện tích của hình phẳng giới hạn bởi hai đồ thị hàm số. 2. Ứng dụng tính diện tích hình tròn và hình Elip. B. VÍ DỤ MINH HỌA. C. BÀI TẬP TỰ LUYỆN. D. LỜI GIẢI CHI TIẾT.
Chuyên đề trắc nghiệm tích phân đặc biệt và nâng cao
Tài liệu gồm 21 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề tích phân đặc biệt và nâng cao, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. 1. Một số dạng tích phân đặc biệt. + Mệnh đề 1: Nếu f(x) là hàm số chẵn và liên tục trên đoạn [−a;a] thì a a a 0 f (x) dx 2 f (x) dx. + Mệnh đề 2: Nếu f(x) là hàm số lẻ và liên tục trên đoạn [−a;a] thì a a f (x) dx 0. + Mệnh đề 3: Nếu f(x) là hàm số chẵn và liên tục trên đoạn [−a;a] thì a a x a 0 f(x) dx f (x) dx m 1. + Mệnh đề 4: Nếu f(x) là hàm số liên tục trên [0;1] thì 2 2 0 0 f (sinx) dx f (cosx) dx. 2. Một số dạng tích phân vận dụng cao. + Dạng 1. Bài toán tích phân liên quan đến các biểu thức sau. + Dạng 2. Bài toán tích phân liên quan đến các biểu thức sau. + Dạng 3. Bài toán tổng quát. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm tích phân hàm hữu tỉ và hàm lượng giác
Tài liệu gồm 21 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề tích phân hàm hữu tỉ và hàm lượng giác, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3.
Chuyên đề trắc nghiệm công thức từng phần tính tích phân
Tài liệu gồm 20 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề công thức từng phần tính tích phân, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. I. LÝ THUYẾT TRỌNG TÂM. II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI. Dạng 1: Sử dụng công thức tích phân từng phần. Dạng 2: Tích phân từng phần với hàm ẩn. Dạng 3: Sử dụng bất đẳng thức tích phân. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.