Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương trình lôgarit chứa tham số

Tài liệu gồm 14 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán Phương trình lôgarit chứa tham số; đây là dạng toán thường gặp trong chương trình Toán 12 phần Giải tích chương 2. Tìm m để f x m 0 có nghiệm (hoặc có k nghiệm) trên D trong phương trình logarit chứa tham số: Bước 1. Tách m ra khỏi biến số và đưa về dạng f x A m. Bước 2. Khảo sát sự biến thiên của hàm số f x trên D. Bước 3. Dựa vào bảng biến thiên để xác định giá trị của tham số m để đường thẳng y A m nằm ngang cắt đồ thị hàm số y f x. Bước 4. Kết luận các giá trị cần tìm của m để phương trình f x A m có nghiệm (hoặc có k nghiệm) trên D. Lưu ý: Nếu hàm số y f x có giá trị lớn nhất và giá trị nhỏ nhất trên D thì giá trị A m cần tìm là những m thỏa mãn: min max x D x D f x A m f x. Nếu bài toán yêu cầu tìm tham số để phương trình có k nghiệm phân biệt, ta chỉ cần dựa vào bảng biến thiên để xác định sao cho đường thẳng y A m nằm ngang cắt đồ thị hàm số y f x tại k điểm phân biệt. Lưu ý quan trọng: Các bước giải phương trình logarit có tham số cần chú ý: Bước 1. Đặt điều kiện (điều kiện đại số điều kiện loga) Bước 2. Dùng các công thức và biến đổi đưa về các phương trình cơ bản rồi giải. Bước 3. So với điều kiện và kết luận giá trị tham số cần tìm.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hàm số lũy thừa, hàm số mũ và hàm số logarit - Cao Tuấn
Chuyên đề hàm số lũy thừa, hàm số mũ và hàm số logarit do thầy Cao Tuấn biên soạn gồm 21 trang. Nội dung tài liệu gồm các phần: A. KIẾN THỨC CẦN NHỚ I. LŨY THỪA 1. Lũy thừa với số mũ nguyên 2. Căn bậc n và lũy thừa với số mũ hữu tỉ 3. Lũy thừa với số mũ thực [ads] II. HÀM SỐ LŨY THỪA 1. Khái niệm hàm số lũy thừa 2. Đạo hàm của hàm số lũy thừa 3. Sự biến thiên của hàm số lũy thừa B. MỘT SỐ VÍ DỤ VỀ SỬ DỤNG KỸ THUẬT GIẢI NHANH C. VÍ DỤ MINH HỌA D. CÂU HỎI TRẮC NGHIỆM RÈN LUYỆN
Chuyên đề hàm số lũy thừa, hàm số mũ, hàm số lôgarit - Nguyễn Ngọc Dũng
Bắt đầu từ năm 2017, môn toán trong kì thi THPT Quốc Gia sẽ diễn ra dưới hình thức trắc nghiệm. Nắm bắt được xu hướng đó, nhằm giúp các em học sinh có một tài liệu tự luận kết hợp với trắc nghiệm hay và bám sát chương trình, nhóm chúng tôi biên soạn ebook chuyên đề hàm số lũy thừa, hàm số mũ và hàm số lôgarit. Ebook là một trong các chuyên đề do nhóm tác giả biên soạn. Trong ebook này, nhóm tác giải đã tổng hợp các câu trắc nghiệm từ gần 200 đề thi thử trên cả nước, giúp các em chinh phục kỳ thi THPT Quốc Gia một cách hiệu quả nhất. Mục lục Chủ đề 1. Công thức mũ. Công thức lũy thừa 1. Tóm tắt lý thuyết 2. Các dạng toán 2.1. Rút gọn biểu thức chứa lũy thừa 2.2. Chứng minh đẳng thức chứa lũy thừa 2.3. So sánh các biểu thức chứa lũy thừa 3. Bài tập trắc nghiệm Chủ đề 2. Công thức lôgarit  1. Tóm tắt lý thuyết 2. Các dạng toán 2.1. Tính toán – rút gọn biểu thức có chứa lôgarit 2.2. Chứng minh đẳng thức chứa lôgarit 2.3. So sánh các lôgarit 2.4. Biểu diễn một lôgarit theo các lôgarit khác 3. Bài tập trắc nghiệm [ads] Chủ đề 3. Hàm số lũy thừa. Hàm số mũ. Hàm số lôgarit  1. Tóm tắt lý thuyết 2. Các dạng toán 2.1. Tìm tập xác định của hàm số 2.2. Đạo hàm – giá trị lớn nhất, nhỏ nhất 2.3. Đồ thị của hàm số mũ – hàm số lũy thừa – hàm số lôgarit 3. Bài tập trắc nghiệm Chủ đề 4. Phương trình mũ 1. Phương pháp đưa về cùng cơ số 2. Phương pháp lôgarit hóa 3. Phương pháp đặt ẩn phụ 4. Phương pháp đưa về phương trình tích 5. Phương pháp hàm số 6. Bài tập trắc nghiệm Chủ đề 5. Phương trình lôgarit  1. Phương pháp đưa về cùng cơ số 2. Phương pháp mũ hóa 3. Phương pháp đặt ẩn phụ 4. Phương pháp đưa về phương trình tích 5. Phương pháp hàm số 6. Bài tập trắc nghiệm Chủ đề 6. Bất phương trình mũ 1. Phương pháp đưa về cùng cơ số 2. Phương pháp đặt ẩn phụ 3. Phương pháp lôgarit hóa 4. Bài tập trắc nghiệm Chủ đề 7. Bất phương trình lôgarit  1. Phương pháp đưa về cùng cơ số 2. Phương pháp đặt ẩn phụ 3. Bài tập trắc nghiệm Chủ đề 8. Các bài toán thực tế 1. Phương pháp 2. Bài tập tự luận 3. Bài tập trắc nghiệm
Chuyên đề hàm số luỹ thừa, hàm số mũ và hàm số logarit - Trần Quốc Nghĩa
Tài liệu phân dạng, hướng dẫn phương pháp giải kèm bài tập mẫu và bài tập trắc nghiệm có đáp án chuyên đề hàm số luỹ thừa, hàm số mũ và hàm số logarit trong chương trình Giải tích 12. Nội dung tài liệu gồm các phần: Vấn đề 1. Lũy thừa với số mũ hữu tỉ – số mũ thực + Dạng 1. Tính toán – rút gọn biểu thức lũy thừa + Dạng 2. So sánh các lũy thừa hay căn số + Dạng 3. Bài toán lãi kép Vấn đề 2. Logarit + Dạng 1. Tính toán – rút gọn biểu thức có chứa logarit + Dạng 2. So sánh hai logarit + Dạng 3. Biểu diễn một logarit theo các logarit khác + Dạng 4. Chứng minh đẳng thức chứa logarit + Dạng 5. Bài toán lãi kép Vấn đề 3. Hàm số mũ – hàm số logarit + Dạng 1. Tìm tập xác định của hàm số + Dạng 2. Đạo hàm của hàm số mũ và logarit + Dạng 3. Gtln và gtnn của hàm số mũ và logarit + Dạng 4. Khảo sát sự biến thiên và vẽ đồ thị hàm số + Dạng 5. Tìm giới hạn của các hàm số mũ và logarit + Dạng 6. Dùng tính đơn điệu để chứng minh bất đẳng thức chứ mũ logarit [ads] Vấn đề 4. Phương trình mũ + Dạng 1. Phương pháp đưa về cùng cơ số + Dạng 2. Phương pháp đặt ẩn phụ + Dạng 3. Phương pháp logarit hóa + Dạng 4. Phương pháp đưa về phương trình tích + Dạng 5. Phương pháp sử dụng bất đẳng thức, tính đơn điệu của hàm số Vấn đề 5. Bất phương trình mũ + Dạng 1. Phương pháp đưa về cùng cơ số + Dạng 2. Phương pháp đặt ẩn phụ + Dạng 3. Phương pháp logarit hóa Vấn đề 6. Phương trình logarit + Dạng 1. Phương pháp đưa về cùng cơ số + Dạng 2. Phương pháp đặt ẩn phụ + Dạng 3. Phương pháp mũ hóa + Dạng 4. Phương pháp đưa về phương trình tích + Dạng 5. Phương pháp sử dụng bất đẳng thức, tính đơn điệu của hàm số Vấn đề 7. Bất phương trình logarit + Dạng 1. Phương pháp đưa về cùng cơ số + Dạng 2. Phương pháp đặt ẩn phụ Vấn đề 8. Hệ phương trình mũ – logarit Vấn đề 9. Phương trình. Hệ phương trình bất phương trình có tham số Bài tập trắc nghiệm + Vấn đề 1. Lũy thừa + Vấn đề 2. Logarit + Vấn đề 3. Hàm số mũ – hàm số logarit – hàm số lũy thừa + Vấn đề 4. Phương trình – bất phương trình mũ + Vấn đề 5. Phương trình – bất phương trình logarit + Vấn đề 6. Bài tập trắc nghiệm (trích từ 7 đề của bgd) Bảng đáp án bài tập trắc nghiệm
Phân loại dạng và phương pháp giải nhanh chuyên đề mũ và logarit - Nguyễn Vũ Minh
Tài liệu phân dạng và hướng dẫn cách giải các bài toán trắc nghiệm trong chuyên đề phương trình mũ và logarit. Nội dung tài liệu gồm các phần: + Phần I: Lũy thừa – Hàm số lũy thừa A. Lũy thừa B. Hàm số lũy thừa C. So sánh mũ – lũy thừa [ads] + Phần II: Logarit A. Công thức logarit B. Hàm số logarit C. So sánh logarit D. Đạo hàm mũ – logarit