Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát đầu năm lớp 9 môn Toán năm 2019 2020 trường Thanh Xuân Hà Nội

Nội dung Đề khảo sát đầu năm lớp 9 môn Toán năm 2019 2020 trường Thanh Xuân Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát đầu năm lớp 9 môn Toán năm 2019-2020 trường Thanh Xuân Hà Nội Đề khảo sát đầu năm lớp 9 môn Toán năm 2019-2020 trường Thanh Xuân Hà Nội Để đánh giá chất lượng và theo dõi tiến độ học tập của học sinh đầu năm học 2019-2020, trường THCS Thanh Xuân, Hà Nội đã tổ chức kỳ kiểm tra khảo sát đầu năm môn Toán lớp 9. Đề khảo sát này bao gồm các bài toán thuộc chương trình Toán lớp 8, với tổng cộng 5 bài toán dạng tự luận. Trong đề khảo sát đầu năm Toán lớp 9 năm 2019-2020 trường Thanh Xuân, một trong các câu hỏi là về hình thang ABCD có góc A và góc D bằng 90 độ, cạnh AB nhỏ hơn cạnh DC. Hai đường chéo AC và BD vuông góc với nhau tại điểm O. Học sinh được yêu cầu tính tỉ số lượng giác của các góc nhọn và cạnh BD của tam giác ADB, tính độ dài các đoạn thẳng AO, DO và AC, và tính diện tích tam giác DOH. Bài toán cũng yêu cầu chứng minh một phương trình liên quan đến đoạn thẳng BH. Câu hỏi khác trong đề khảo sát là về giá trị nhỏ nhất của biểu thức S với x nằm trong khoảng 2016 đến 2017. Học sinh phải tính toán và suy luận để tìm ra giá trị nhỏ nhất của biểu thức này. Đề khảo sát đầu năm môn Toán lớp 9 năm 2019-2020 trường Thanh Xuân Hà Nội không chỉ giúp học sinh ôn tập kiến thức mà còn phát triển kỹ năng suy luận và giải quyết vấn đề.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 9 lần 1 năm 2019 - 2020 trường Phạm Hồng Thái - Hà Nội
Đề khảo sát Toán 9 lần 1 năm học 2019 – 2020 trường THCS Phạm Hồng Thái – Hà Nội gồm có 05 bài toán dạng tự luận, thời gian làm bài 60 phút, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020, nhằm giúp giáo viên và nhà trường kiểm tra định kỳ chất lượng học sinh. Trích dẫn đề khảo sát Toán 9 lần 1 năm 2019 – 2020 trường Phạm Hồng Thái – Hà Nội : + Cho ∆ABC vuông ở A, vẽ đường cao AH. Biết BC = 25cm và AB = 15cm. a) Tính BH, AH và góc ABC (số đo góc làm tròn đến độ). b) Trên cạnh AC lấy điểm D bất kì (D khác A và C). Gọi E là hình chiếu của A trên BD. Chứng minh: BH.BC = BE.BD. c) Chứng minh: góc ABD = góc AHE. + Thực hiện phép tính. + Giải các phương trình sau.
Đề khảo sát Toán 9 tháng 9 năm 2019 - 2020 trường Dịch Vọng Hậu - Hà Nội
Ngày …/09/2019, trường THCS Dịch Vọng Hậu, Cầu Giấy, Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán 9 tháng 9 năm học 2019 – 2020. Đề khảo sát Toán 9 tháng 9 năm 2019 – 2020 trường Dịch Vọng Hậu – Hà Nội đề số 01 gồm 04 bài toán dạng tự luận, đề thi gồm có 01 trang, học sinh làm bài trong khoảng thời gian 90 phút. [ads] Trích dẫn đề khảo sát Toán 9 tháng 9 năm 2019 – 2020 trường Dịch Vọng Hậu – Hà Nội : + Cho tam giác ABC vuông tại A (AB > AC), kẻ đường cao AH. a) Tính các cạnh và các góc của tam giác ABC biết BH = 9cm, CH = 4cm. b) Vẽ AD là tia phân giác của góc BAH, D thuộc BH. Chứng minh tam giác ACD cân. c) Chứng minh HD.BC = DB.AC. d) Gọi M là trung điểm của AB, E là giao điểm của hai đường thẳng MD và AH. Chứng minh CE // AD. Chú ý: Số đo góc làm tròn đến độ.
Đề kiểm tra Toán 9 tháng 9 năm 2019 - 2020 trường Archimedes Academy - Hà Nội
Với mục đích kiểm tra đánh giá chất lượng định kỳ môn Toán đối với học sinh khối lớp 9, vừa qua, trường THCS Archimedes Academy – Hà Nội đã tổ chức kỳ thi kiểm tra tập trung Toán 9 tháng 9 năm học 2019 – 2020. Đề kiểm tra Toán 9 tháng 9 năm 2019 – 2020 trường Archimedes Academy – Hà Nội gồm 2 mã đề: đề số 1 và đề số 2, đề thi gồm 05 bài toán dạng tự luận, thời gian làm bài 90 phút. [ads] Trích dẫn đề kiểm tra Toán 9 tháng 9 năm 2019 – 2020 trường Archimedes Academy – Hà Nội : + Cho đường tròn (O), đường kính AB = 2R. Gọi M là trung điểm của OB, đường thẳng d luôn đi qua M cắt (O) tại C và D. Gọi H là trung điểm của CD. a) Chứng minh H thuộc đường tròn đường kính OM. b) Giả sử CD = R√3, tính độ dài OH theo R và số đo góc COD. c) Gọi I là trực tâm của tam giác ACD. Chứng minh H là trung điểm của BI. d) Cho đường thẳng d thay đổi và luôn đi qua M. Chứng minh điểm I luôn nằm trên một đường tròn cố định. + Cho x, y, z là các số thực không âm thỏa mãn x + y + z = 3. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức N = √(x + y) + √(y + z) + √(z + x).