Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Khánh Hòa

Thứ Năm ngày 03 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Khánh Hòa tổ chức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2021 – 2022. Đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Khánh Hòa gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Khánh Hòa : + Theo kế hoạch, Công an tỉnh Khánh Hòa sẽ cấp 7200 thẻ Căn cước công dân cho địa phương A. Một tổ công tác được điều động đến địa phương A để cấp thẻ Căn cước công dân trong một thời gian nhất định. Khi thực hiện nhiệm vụ, tổ công tác đã cải tiến kĩ thuật nên mỗi ngày đã cấp tăng thêm được 40 thẻ Căn cước so với kế hoạch. Vì vậy, tổ công tác đã hoàn thành nhiệm vụ sớm hơn kế hoạch 2 ngày. Hỏi theo kế hoạch ban đầu, mỗi ngày tổ công tác sẽ cấp được bao nhiêu thẻ Căn cước? + Cho tam giác ABC có ba góc nhọn, nội tiếp trong đường tròn O R và hai đường cao BE CF cắt nhau tại H. a) Chứng minh BCEF là tứ giác nội tiếp đường tròn. b) Chưng minh OA EF. c) Hai đường thẳng BE, CF lần lượt cắt đường tròn (O) tại điểm thứ hai là N và P. Đường thẳng AH cắt đường tròn (O) tại điểm thứ hai là M và cắt BC tại D. Tính giá trị biểu thức AM BN CP AD BE CF. + Trên mặt phẳng tọa độ, cho parabol 2 P y x và đường thẳng 2 2 2 d y x m m (m là tham số). a) Biết A là một điểm thuộc P và có hoành độ 2 A x. Xác định tọa độ điểm A. b) Tìm tất cả các giá trị của m để d cắt P tại hai điểm phân biệt. c) Xác định tất cả các giá trị của m để d cắt P tại hai điểm phân biệt có hoành độ lần lượt là 1 x và 2 x thỏa mãn điều kiện 2 1 2 x x m 2 3.

Nguồn: toanmath.com

Đọc Sách

Đề Toán tuyển sinh vào THPT năm học 2019 2020 sở GD ĐT Hà Nội
Nội dung Đề Toán tuyển sinh vào THPT năm học 2019 2020 sở GD ĐT Hà Nội Bản PDF - Nội dung bài viết Đề Toán tuyển sinh vào THPT năm học 2019 - 2020 sở GD ĐT Hà Nội Đề Toán tuyển sinh vào THPT năm học 2019 - 2020 sở GD ĐT Hà Nội Chiều Chủ Nhật ngày 02 tháng 06 năm 2019, Sở Giáo dục và Đào tạo thành phố Hà Nội đã tổ chức kỳ thi Toán tuyển sinh vào lớp 10 THPT năm học 2019 – 2020. Kỳ thi này nhằm mục đích đánh giá năng lực học tập môn Toán của các em học sinh một cách công bằng và chính xác, từ đó giúp các trường THPT trên địa bàn Hà Nội lựa chọn các học sinh phù hợp để chuẩn bị cho năm học mới. Đề Toán tuyển sinh vào lớp 10 THPT năm học 2019 – 2020 sở GD&ĐT Hà Nội đề cập đến 5 bài toán dạng tự luận. Đề thi bao gồm 1 trang, thời gian làm bài là 120 phút, cung cấp đáp án và lời giải chi tiết cho các bài toán. Trong số các bài toán, có một số bài như: Hai đội công nhân cùng làm một công việc, sau 15 ngày làm chung thì hoàn thành. Nếu đội thứ nhất làm riêng 3 ngày rồi dừng lại, đội thứ hai làm tiếp trong 5 ngày thì kết thúc được 25% công việc. Hỏi nếu mỗi đội làm riêng thì cần bao nhiêu ngày mới hoàn thành công việc đó? Cho biểu thức P = a^4 + b^4 - ab, với a, b là các số thực thỏa điều kiện a^2 + b^2 + ab = 3. Hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P. Một bồn nước inox dạng hình trụ, chiều cao 1,75m và diện tích đáy 0,32m^2. Hỏi bồn nước này có thể chứa bao nhiêu mét khối nước khi đầy? Qua những bài toán này, các thí sinh sẽ được đánh giá về khả năng tư duy logic, tính toán và giải quyết vấn đề. Kỳ thi Toán tuyển sinh vào THPT năm học 2019 - 2020 sở GD&ĐT Hà Nội là cơ hội để các em thể hiện năng lực và chuẩn bị cho hành trình học tập tương lai.
Đề tuyển sinh THPT năm 2019 môn Toán sở GD ĐT Quảng Ninh
Nội dung Đề tuyển sinh THPT năm 2019 môn Toán sở GD ĐT Quảng Ninh Bản PDF - Nội dung bài viết Đề Tuyển Sinh THPT Năm 2019 Môn Toán Sở GD ĐT Quảng Ninh Đề Tuyển Sinh THPT Năm 2019 Môn Toán Sở GD ĐT Quảng Ninh Vào sáng thứ Bảy, ngày 01 tháng 06 năm 2019, Sở Giáo dục và Đào tạo tỉnh Quảng Ninh đã tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán nhằm chọn lọc những học sinh có học lực tốt để chuẩn bị cho năm học 2019 – 2020. Đề tuyển sinh lớp 10 THPT năm 2019 môn Toán của Sở GD&ĐT Quảng Ninh bao gồm 5 bài toán dạng tự luận, thời gian làm bài là 120 phút, đề thi có độ khó phù hợp với đối tượng học sinh. Một trong các câu hỏi trong đề tuyển sinh môn Toán 2019 của Sở GD&ĐT Quảng Ninh là: Cho phương trình \( x^2 + 2x + m - 1 = 0 \), với m là tham số. 1. Giải phương trình với m = 1. 2. Tìm giá trị của m sao cho phương trình đã cho có hai nghiệm phân biệt x1 và x2 thỏa mãn \( x_1^3 + x_2^3 - 6x_1x_2 = 4(m – m^2) \). Một bài toán khác đòi hỏi học sinh phải suy luận và giải quyết vấn đề là: Hai người thợ cùng làm một công việc trong 2 ngày thì hoàn thành. Mỗi ngày, người thứ hai làm được công việc gấp ba lần người thứ nhất. Hỏi nếu mỗi người làm một mình, họ sẽ hoàn thành công việc trong bao nhiêu ngày? Câu hỏi cuối cùng đề cập đến vấn đề hình học và logic: Cho đường tròn (O; R) có hai đường kính AB và CD vuông góc với nhau. E là điểm thuộc cung nhỏ BC, tiếp tuyến của đường tròn (O; R) tại E cắt AB tại điểm I. Gọi F là giao điểm của DE và AB, K là điểm thuộc đường thẳng IE sao cho KF vuông góc với AB. Hãy chứng minh các phát biểu sau: a. Tứ giác OKEF nội tiếp. b. Góc OKF bằng góc ODF. c. DE.DF = 2R^2. d. Tính tan MDC khi EIB = 45°. Cả 3 câu hỏi trên đều đòi hỏi học sinh có kiến thức vững chắc và khả năng suy luận logic tốt để giải quyết.
Đề Toán tuyển sinh năm 2019 2020 trường chuyên Lê Quý Đôn BRVT (Vòng 1)
Nội dung Đề Toán tuyển sinh năm 2019 2020 trường chuyên Lê Quý Đôn BRVT (Vòng 1) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh năm 2019-2020 trường chuyên Lê Quý Đôn BRVT Đề Toán tuyển sinh năm 2019-2020 trường chuyên Lê Quý Đôn BRVT Ngày 30 tháng 05 năm 2019, trường THPT chuyên Lê Quý Đôn, tỉnh Bà Rịa - Vũng Tàu đã tổ chức kỳ thi Toán tuyển sinh vào lớp 10 năm học 2019-2020. Đề Toán tuyển sinh lớp 10 năm 2019-2020 của trường chuyên Lê Quý Đôn - BRVT (Vòng 1) là đề thi chung dành cho tất cả các thí sinh tham dự kỳ thi, bao gồm 5 bài toán tự luận, thời gian làm bài là 120 phút. Trích dẫn một số câu hỏi từ đề Toán tuyển sinh lớp 10 năm 2019-2020 trường chuyên Lê Quý Đôn - BRVT (Vòng 1): + Phân tích hàm số y = -1/2x^2 có đồ thị (P) và đường thẳng (d): y = (m - 1)x - m - 3 (với m là tham số). + Tính diện tích của một thửa ruộng hình chữ nhật có độ dài đường chéo là 40m, chiều dài lớn hơn chiều rộng 8m. + Chứng minh các tính chất của tam giác ABC góc nhọn. + Giải các bài toán tương tác với đường tròn và các đường thẳng trong mặt phẳng. Đề Toán tuyển sinh năm 2019-2020 của trường chuyên Lê Quý Đôn BRVT không chỉ đánh giá kiến thức của thí sinh mà còn đòi hỏi sự tỉ mỉ, logic và khả năng giải quyết vấn đề. Chúc các em thí sinh đạt kết quả cao trong kỳ thi sắp tới!
Đề Toán tuyển sinh THPT năm 2019 2020 sở GD ĐT Ninh Thuận
Nội dung Đề Toán tuyển sinh THPT năm 2019 2020 sở GD ĐT Ninh Thuận Bản PDF - Nội dung bài viết Đề Toán tuyển sinh THPT Ninh Thuận năm 2019-2020 Đề Toán tuyển sinh THPT Ninh Thuận năm 2019-2020 Ngày thứ Bảy, 01 tháng 06 năm 2019, sở Giáo dục và Đào tạo tỉnh Ninh Thuận đã tổ chức kỳ thi Toán tuyển sinh vào lớp 10 khối THPT cho năm học 2019 - 2020. Đề Toán gồm 4 bài toán, được làm trong thời gian 120 phút. Trích dẫn một số bài toán trong đề Toán: 1. Cho parabol (P): y = 2x^2 và đường thẳng d: y = 3x + 2. Hãy vẽ đồ thị (P) trên hệ trục tọa độ Oxy và tìm tọa độ giao điểm của (P) và d. 2. Chứng minh rằng phương trình x^2 - 2(m - 1)x + 2m - 4 = 0 luôn có hai nghiệm phân biệt x1, x2. Tìm giá trị nhỏ nhất của biểu thức A = x1^2 + x2^2. 3. Cho tam giác ABC vuông tại C nội tiếp trong đường tròn tâm O, đường kính AB = 2R, góc ABC = 60°. Câu hỏi đặt ra bao gồm chứng minh tứ giác CHOK nội tiếp trong một đường tròn, chứng minh rằng AC.AD = 4R^2, và tính diện tích phần tam giác ABD nằm ngoài hình tròn tâm O. Đề Toán tuyển sinh THPT Ninh Thuận năm 2019-2020 mang đến cho học sinh những bài toán đa dạng, đòi hỏi sự logic, suy luận, và kiến thức toán học chắc chắn. Chúc các em học sinh thành công trong kỳ thi này!