Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Khánh Hòa

Thứ Năm ngày 03 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Khánh Hòa tổ chức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2021 – 2022. Đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Khánh Hòa gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Khánh Hòa : + Theo kế hoạch, Công an tỉnh Khánh Hòa sẽ cấp 7200 thẻ Căn cước công dân cho địa phương A. Một tổ công tác được điều động đến địa phương A để cấp thẻ Căn cước công dân trong một thời gian nhất định. Khi thực hiện nhiệm vụ, tổ công tác đã cải tiến kĩ thuật nên mỗi ngày đã cấp tăng thêm được 40 thẻ Căn cước so với kế hoạch. Vì vậy, tổ công tác đã hoàn thành nhiệm vụ sớm hơn kế hoạch 2 ngày. Hỏi theo kế hoạch ban đầu, mỗi ngày tổ công tác sẽ cấp được bao nhiêu thẻ Căn cước? + Cho tam giác ABC có ba góc nhọn, nội tiếp trong đường tròn O R và hai đường cao BE CF cắt nhau tại H. a) Chứng minh BCEF là tứ giác nội tiếp đường tròn. b) Chưng minh OA EF. c) Hai đường thẳng BE, CF lần lượt cắt đường tròn (O) tại điểm thứ hai là N và P. Đường thẳng AH cắt đường tròn (O) tại điểm thứ hai là M và cắt BC tại D. Tính giá trị biểu thức AM BN CP AD BE CF. + Trên mặt phẳng tọa độ, cho parabol 2 P y x và đường thẳng 2 2 2 d y x m m (m là tham số). a) Biết A là một điểm thuộc P và có hoành độ 2 A x. Xác định tọa độ điểm A. b) Tìm tất cả các giá trị của m để d cắt P tại hai điểm phân biệt. c) Xác định tất cả các giá trị của m để d cắt P tại hai điểm phân biệt có hoành độ lần lượt là 1 x và 2 x thỏa mãn điều kiện 2 1 2 x x m 2 3.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 trường chuyên Quốc học Huế
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 trường chuyên Quốc học Huế Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2021-2022 trường chuyên Quốc học Huế Đề tuyển sinh môn Toán (chuyên) năm 2021-2022 trường chuyên Quốc học Huế Xin chào quý thầy, cô giáo và các em học sinh! Hôm nay Sytu xin giới thiệu đến bạn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021-2022 của trường chuyên Quốc học Huế. Đề thi sẽ diễn ra vào ngày 05 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021-2022 trường chuyên Quốc học Huế: 1. Cho parabol (P): y = x^2 và đường thẳng (d): y = 2mx + 3 (với m khác 0) trên mặt phẳng tọa độ Oxy. Tìm tất cả các giá trị của m sao cho đường thẳng (d) cắt (P) tại hai điểm phân biệt A, B sao cho diện tích tam giác OAB bằng 6 cm2. 2. Cho đường tròn (O) và dây BC cố định (BC không phải là đường kính). Điểm A di động trên cung lớn BC sao cho tam giác ABC là tam giác nhọn. Gọi E là điểm đối xứng của B qua đường thẳng AC và F là điểm đối xứng của C qua đường thẳng AB. Gọi K là giao điểm của hai đường thẳng EC và FB, H là giao điểm của hai đường thẳng BE và CF. a) Chứng minh FAHB và ACKF là các tứ giác nội tiếp. b) Chứng minh KA là phân giác của góc BKC và ba điểm K, O, A thẳng hàng. c) Xác định vị trí của điểm A sao cho tứ giác BKCO có diện tích lớn nhất. 3. Tìm tất cả các giá trị nguyên dương của x và y thoả mãn x^2 - 2^y*x - 4^21.9 = 0. Hy vọng rằng đề thi sẽ là cơ hội để các em thực sự thể hiện tài năng và kiến thức trong môn Toán. Chúc các em học tốt và đạt kết quả cao trong kỳ thi sắp tới!
Đề tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Cần Thơ
Nội dung Đề tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Cần Thơ Bản PDF - Nội dung bài viết Đề tuyển sinh vào môn Toán năm 2021-2022 sở GD&ĐT Cần Thơ Đề tuyển sinh vào môn Toán năm 2021-2022 sở GD&ĐT Cần Thơ Chào đón quý thầy cô giáo và các em học sinh! Để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2021-2022, Sytu xin giới thiệu đến quý vị đề thi được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận. Đề thi bao gồm 20 câu trắc nghiệm và 4 câu tự luận, tổng cộng 10 điểm. Thời gian làm bài là 120 phút, và kỳ thi sẽ diễn ra vào ngày 05 tháng 06 năm 2021. Trích dẫn một số câu hỏi từ đề tuyển sinh: 1. Tìm tất cả các giá trị của tham số m sao cho phương trình 2x^2 + mx + 1 = 0 có hai nghiệm phân biệt x1, x2 thỏa mãn x1^2 + x2^2 + x1 + x2 = 1. 2. Số lượng học sinh tham gia câu lạc bộ Toán học và Sáng tạo khoa học trong hai học kỳ khác nhau, biết rằng tổng số học sinh tham gia cả hai câu lạc bộ không đổi. Hỏi số lượng học sinh của mỗi câu lạc bộ ở học kỳ 2 là bao nhiêu? 3. Xác định các tính chất của các tứ giác và tam giác trong một hệ thống đường tròn nội tiếp để chứng minh một số quy luật và tính chất của hình học. Hãy cùng chuẩn bị tốt cho kỳ thi tuyển sinh và thử sức với đề thi môn Toán năm 2021-2022. Chúc các em học sinh thành công và giải đề thi một cách xuất sắc!
Đề tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Đắk Lắk
Nội dung Đề tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Đắk Lắk Bản PDF - Nội dung bài viết Đề tuyển sinh vào môn Toán năm 2021-2022 sở GD ĐT Đắk Lắk Đề tuyển sinh vào môn Toán năm 2021-2022 sở GD ĐT Đắk Lắk Đề tuyển sinh vào lớp 10 môn Toán năm học 2021 - 2022 của sở GD&ĐT Đắk Lắk được Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh. Đề thi bao gồm đáp án và lời giải chi tiết do thầy giáo Nguyễn Dương Hải - giáo viên Toán trường THCS Nguyễn Chí Thanh, Buôn Ma Thuột, Đắk Lắk trình bày. Một trong những câu hỏi trong đề tuyển sinh là: Trên nửa đường tròn O đường kính AB với AB = 2022, lấy điểm C (C khác A và B), từ C kẻ CH vuông góc với AB (H thuộc AB). Gọi D là điểm bất kỳ trên đoạn CH (D khác C và H), đường thẳng AD cắt nửa đường tròn tại điểm thứ hai là E. Hãy thực hiện các yêu cầu sau: 1) Chứng minh tứ giác BHDE là tứ giác nội tiếp. 2) Chứng minh AD*EC = CD*AC. 3) Chứng minh 2*AD*AE = BH*BA = 2022. 4) Xác định vị trí của điểm C sao cho chu vi tam giác COH đạt giá trị lớn nhất khi điểm C di chuyển trên nửa đường tròn (C khác A, B và điểm chính giữa cung AB). Ngoài ra, đề cũng đưa ra các bài toán khác trong mặt phẳng tọa độ Oxy và Parabol như: phương trình đường thẳng đi qua điểm A(1,2) và song song với đường thẳng y = x/2 - 1, bài toán về Parabol 2y = x^2 và đường thẳng d y = mx + m^2 - 1/3. Hãy tìm giá trị nhỏ nhất của M(x1, x2) khi giao điểm của đường thẳng d và Parabol P là (x1, x2).
Đề tuyển sinh vào môn Toán (chuyên) năm 2021 2022 sở GD ĐT Đắk Lắk
Nội dung Đề tuyển sinh vào môn Toán (chuyên) năm 2021 2022 sở GD ĐT Đắk Lắk Bản PDF - Nội dung bài viết Chào đón quý thầy cô và các em học sinh đến với đề tuyển sinh môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Đắk Lắk Chào đón quý thầy cô và các em học sinh đến với đề tuyển sinh môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Đắk Lắk Chúng tôi xin giới thiệu đến các bạn đề tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2021-2022 của sở GD&ĐT Đắk Lắk. Đề thi này bao gồm các câu hỏi, đáp án và lời giải chi tiết để giúp các em ôn tập hiệu quả. Ví dụ về một phần trong đề tuyển sinh: "Cho phương trình...". Trong đây, bạn sẽ được đặt ra những câu hỏi liên quan đến phương trình đó và cùng khám phá cách giải quyết chúng trong phần lời giải chi tiết. Chúng tôi hy vọng đề tuyển sinh này sẽ giúp các em học sinh rèn luyện kiến thức, chuẩn bị tốt nhất cho kỳ thi sắp tới. Hãy cùng Sytu trải nghiệm và khám phá thêm nhiều điều thú vị trong đề thi môn Toán (chuyên) của chúng tôi!