Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG tỉnh Toán 10 THPT năm 2018 - 2019 sở GDĐT Hải Dương

Thứ Tư ngày 03 tháng 04 năm 2019, sở Giáo dục và Đào tạo tỉnh Hải Dương tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán 10 khối THPT năm học 2018 – 2019, nhằm tuyển chọn ra những em học sinh lớp 10 giỏi môn Toán đang học tập tại các trường THPT tại Hải Dương để tuyên dương, khen thưởng và thành lập đội tuyển học sinh giỏi Toán 10 cấp tỉnh. Đề thi HSG tỉnh Toán 10 THPT năm 2018 – 2019 sở GD&ĐT Hải Dương được biên soạn theo hình thức tự luận với 05 bài toán, học sinh làm bài thi trong 180 phút, đề thi có lời giải chi tiết và thang chấm điểm. [ads] Trích dẫn đề thi HSG tỉnh Toán 10 THPT năm 2018 – 2019 sở GD&ĐT Hải Dương : + Một xưởng sản xuất hai loại sản phẩm loại I và loại II từ 200kg nguyên liệu và một máy chuyên dụng. Để sản xuất được một kilôgam sản phẩm loại I cần 2kg nguyên liệu và máy làm việc trong 3 giờ. Để sản xuất được một kilôgam sản phẩm loại II cần 4kg nguyên liệu và máy làm việc trong 1,5 giờ. Biết một kilôgam sản phẩm loại I lãi 300000 đồng, một kilôgam sản phẩm loại II lãi 400000 đồng và máy chuyên dụng làm việc không quá 120 giờ. Hỏi xưởng cần sản xuất bao nhiêu kilôgam sản phẩm mỗi loại để tiền lãi lớn nhất? + Cho tam giác nhọn ABC, gọi H, E, K lần lượt là chân đường cao kẻ từ các đỉnh A, B, C. Gọi diện tích các tam giác ABC và HEK lần lượt là S_ΔABC và S_ΔHEK . Biết rằng S_ΔABC = 4.S_ΔHEK, chứng minh (sinA)^2 + (sinB)^2 + (sinC)^2 = 9/4. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC cân tại A. Đường thẳng AB có phương trình x + y – 3 = 0, đường thẳng AC có phương trình x – 7y + 5 = 0. Biết điểm M(1;1;0) thuộc cạnh BC, tìm tọa độ các đỉnh A, B, C.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi Toán 10 năm 2023 - 2024 sở GDĐT Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi môn Toán 10 THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; đề thi có đáp án trắc nghiệm mã đề 101 102 103 104. Trích dẫn Đề thi chọn học sinh giỏi Toán 10 năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc : + Lớp 10D có 19 học sinh giỏi môn Toán, 16 học sinh giỏi môn Vật lí và 15 học sinh giỏi môn Hóa học. Trong đó có 5 học sinh giỏi cả hai môn Toán và môn Vật lí, 5 học sinh giỏi cả hai môn Vật lí và môn Hóa học, 5 học sinh giỏi cả hai môn Toán và môn Hóa học và có 3 học sinh giỏi cả ba môn Toán, Vật lí, Hóa học. Ngoài ra, trong lớp có 6 học sinh không giỏi môn nào trong ba môn Toán, Vật lí, Hóa học. Tìm số học sinh của lớp 10D? + Hai chất điểm A, B cách nhau 60 m. Tại cùng thời điểm, chất điểm A chuyển động thẳng trên đường thẳng AB theo hướng từ A đến B với vận tốc không đổi 1 v ms 10, chất điểm B chuyển động trên đường thẳng BC theo hướng từ B đến C với vận tốc 2 v ms 8. Biết ABC = 120, hỏi sau bao nhiêu giây tính từ lúc cả hai bắt đầu cùng chuyển động thì khoảng cách giữa hai chất điểm ngắn nhất? + Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 210 gam đường, 9 lít nước và 24 gam hương liệu để pha chế nước cam và nước táo. Để pha chế 1 lít nước cam cần 30 gam đường, 1 lít nước và 1 gam hương liệu; Để pha chế 1 lít nước táo cần 10 gam đường, 1 lít nước và 4 gam hương liệu. Mỗi lít nước cam nhận được 60 điểm thưởng, mỗi lít nước táo nhận được 80 điểm thưởng. Hỏi cần pha chế bao nhiêu lít nước trái cây mỗi loại để đạt được số điểm thưởng cao nhất? A. 5 lít nước cam và 4 lít nước táo. B. 4 lít nước cam và 6 lít nước táo. C. 6 lít nước cam và 5 lít nước táo. D. 4 lít nước cam và 5 lít nước táo.
Đề thi Olympic Toán 10 năm 2023 - 2024 cụm Hà Đông Hoài Đức - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi Olympic dành cho học sinh môn Toán 10 năm học 2023 – 2024 cụm trường THPT Hà Đông & Hoài Đức, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 28 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 10 năm 2023 – 2024 cụm Hà Đông & Hoài Đức – Hà Nội : + Nhà máy dự định dùng hai loại nguyên liệu để sản xuất ít nhất 140 kg chất A và 18 kg chất B. Với mỗi tấn nguyên liệu loại I, nhà máy chiết xuất được 20 kg chất A và 1,2 kg chất B. Với mỗi tấn nguyên liệu loại II, nhà máy chiết xuất được 10 kg chất A và 3 kg chất B. Giá mỗi tấn nguyên liệu loại I là 8 triệu đồng và loại II là 6 triệu đồng. Hỏi nhà máy phải dùng bao nhiêu tấn nguyên liệu mỗi loại để chi phí mua nguyên liệu là ít nhất mà vẫn đạt mục tiêu đề ra. Biết rằng cơ sở cung cấp nguyên liệu chỉ có thể cung cấp tối đa 9 tấn nguyên liệu loại I và 8 tấn nguyên liệu loại II. + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC cân tại A có phương trình đường thẳng chứa cạnh AB là x y 2 2 0 phương trình đường thẳng chứa cạnh AC là 2 1 0 x y biết điểm M 12 thuộc đoạn thẳng BC. Tìm tọa độ điểm D sao cho DB DC có giá trị nhỏ nhất. + Xét các số thực x y z thỏa mãn đồng thời 0 1 x y z và 3 2 4 x y z tìm giá trị lớn nhất của biểu thức 2 S x y z 3 2.
Đề thi Olympic Toán 10 năm 2023 - 2024 cụm Hoàn Kiếm Hai Bà Trưng - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi Olympic môn Toán 10 năm học 2023 – 2024 cụm trường THPT Hoàn Kiếm & Hai Bà Trưng, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 10 năm 2023 – 2024 cụm Hoàn Kiếm & Hai Bà Trưng – Hà Nội : + Một công ty TNHH trong một đợt quảng cáo và bán khuyến mãi hàng hóa (1 sản phẩm mới của công ty) cần thuê xe để chở 140 người và 9 tấn hàng. Nơi thuê chỉ có hai loại xe A và B, trong đó xe loại A có 10 chiếc, xe loại B có 9 chiếc. Một chiếc xe loại A được cho thuê với giá 4 triệu, loại B giá 3 triệu. Hỏi công ty phải thuê bao nhiêu xe mỗi loại để chi phí vận chuyển là thấp nhất, biết rằng xe A chỉ chở được tối đa 20 người và 0,6 tấn hàng, xe B chở được tối đa 10 người và 1,5 tấn hàng. + Cho tam giác ABC có BC a CA b AB c. Ký hiệu a h là độ dài đường cao xuất phát từ đỉnh A và p là nửa chu vi của tam giác ABC. 1) Chứng minh 2 2 b c a b C c B cos cos. 2) Chứng minh tam giác ABC cân nếu thỏa mãn điều kiện. + Trong mặt phẳng tọa độ Oxy cho ABC biết B2 1 đường thẳng chứa đường cao và đường phân giác trong qua hai đỉnh A C có phương trình lần lượt là 3 4 27 0 x y và x y 2 5 0. 1) Viết phương trình tổng quát của đường thẳng BC và tìm tọa độ điểm C. 2) Viết phương trình tổng quát của đường thẳng AB.