Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 3 lớp 10 môn Toán năm 2022 2023 trường THPT Thuận Thành 1 Bắc Ninh

Nội dung Đề khảo sát lần 3 lớp 10 môn Toán năm 2022 2023 trường THPT Thuận Thành 1 Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng lần 3 môn Toán lớp 10 năm học 2022 – 2023 trường THPT Thuận Thành số 1, tỉnh Bắc Ninh; đề thi mã đề 132 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, không kể thời gian phát đề; đề thi có đáp án. Trích dẫn Đề khảo sát lần 3 Toán lớp 10 năm 2022 – 2023 trường THPT Thuận Thành 1 – Bắc Ninh : + Vòng chung kết “Học sinh tài năng” ở một trường THPT có 7 thí sinh dự thi trong đó có Long và Thắm. Mỗi thí sinh chọn một câu hỏi thuộc một trong bốn chủ đề: Âm nhạc, thể thao, lịch sử, khoa học để trả lời. Số cách chọn sao cho chủ đề nào cũng có thí sinh chọn và hai bạn Long, Thắm luôn chọn cùng chủ đề bằng? + Cho hòn đảo D cách bờ 4km (CD km 4). Ngôi làng B cách C một khoảng 7km. Nhà nước muốn xây dựng một trạm y tế A trên đất liền sao cho có thể phục vụ được cho dân cư ở cả đảo D và làng B. Biết trung bình vận tốc di chuyển tàu cứu thương là 100 km h xe cứu thương là 80 km h. Vậy nên đặt trạm y tế A cách đảo D bao xa để thời gian cứu thương cho hai địa điểm là như nhau? (tham khảo hình vẽ bên dưới). + Ông A có một mảnh vườn hình elip có độ dài trục lớn là 10m, độ dài trục nhỏ là 8m. Ông A chia mảnh vườn elip thành hai phần bởi đường tròn có đường kính bằng độ dài trục nhỏ và có tâm trùng với tâm của elip. Ông dự tính sẽ làm một hồ cá hình tròn ở giữa miếng đất, phần còn lại ông sẽ trồng cỏ (mô tả như hình vẽ). Biết diện tích của một elip có phương trình chính tắc 2 2 1 x y E a b có công thức là S ab. Diện tích phần trồng cỏ là (làm tròn đến hai chữ số thập phân)? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG lớp 10 môn Toán THPT năm học 2018 2019 sở GD ĐT Vĩnh Phúc
Nội dung Đề thi chọn HSG lớp 10 môn Toán THPT năm học 2018 2019 sở GD ĐT Vĩnh Phúc Bản PDF - Nội dung bài viết Đề thi chọn HSG lớp 10 môn Toán THPT năm học 2018-2019 sở GD ĐT Vĩnh Phúc Đề thi chọn HSG lớp 10 môn Toán THPT năm học 2018-2019 sở GD ĐT Vĩnh Phúc Ngày 09 tháng 04 năm 2019, sở Giáo dục và Đào tạo Vĩnh Phúc đã tổ chức kỳ thi chọn học sinh giỏi lớp 10 THPT môn Toán năm học 2018-2019. Đề thi được biên soạn theo hình thức tự luận với 10 bài toán, học sinh có thời gian làm bài trong 180 phút. Trích dẫn đề thi chọn HSG Toán lớp 10 THPT năm học 2018-2019 sở GD&ĐT Vĩnh Phúc: + Bài toán 1: Cho tam giác ABC có góc ABC = 60°. Gọi D là giao điểm của đường phân giác trong góc A với cạnh BC, điểm E và F lần lượt là hình chiếu vuông góc của D lên AB, AC. Đặt AB/AC = x, hãy tính tỉ số diện tích S_DEF/S_ABC theo x và tính tỉ số đó khi BD = 8, BC = 10. + Bài toán 2: Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình bình hành ABCD có AC = 2AB, phương trình đường chéo BD: x + y - 1 = 0, điểm B có hoành độ âm. Gọi M là trung điểm cạnh BC và E(3;4) là điểm thuộc đoạn thẳng AC thỏa mãn AC = 4AE. Hãy tìm tọa độ các đỉnh A, B, C, D biết diện tích tam giác DEC bằng 4 và điểm M nằm trên đường thẳng d: 2x + y = 0. + Bài toán 3: Cho a, b thuộc R và a > 0. Xét hai hàm số f(x) = 2x^2 - 4x + 5 và g(x) = x^2 + ax + b. Tìm tất cả các giá trị của a và b biết giá trị nhỏ nhất của g(x) nhỏ hơn giá trị nhỏ nhất của f(x) là 8 đơn vị và đồ thị của hai hàm số trên có đúng một điểm chung. Đây là những bài toán thú vị và đa dạng trong đề thi chọn HSG lớp 10 môn Toán THPT năm học 2018-2019 sở GD ĐT Vĩnh Phúc. Học sinh cần phải áp dụng kiến thức đã học và suy luận logic để giải quyết các bài toán này một cách chính xác và hiệu quả.
Đề thi chọn HSG lớp 10 môn Toán năm 2018 2019 trường THPT Thị xã Quảng Trị
Nội dung Đề thi chọn HSG lớp 10 môn Toán năm 2018 2019 trường THPT Thị xã Quảng Trị Bản PDF - Nội dung bài viết Đề thi chọn HSG lớp 10 môn Toán năm 2018-2019 trường THPT Thị xã Quảng Trị Đề thi chọn HSG lớp 10 môn Toán năm 2018-2019 trường THPT Thị xã Quảng Trị Ngày 03 tháng 04 năm 2019, trường THPT Thị xã Quảng Trị đã tổ chức kỳ thi năm học sinh giỏi văn hóa môn Toán lớp 10 năm học 2018 - 2019. Đề thi đã được biên soạn để chọn ra những em học sinh xuất sắc nhất, những em này sẽ được đưa vào đội tuyển học sinh giỏi Toán lớp 10 của trường và được bồi dưỡng, tuyên dương và khen thưởng nhằm nâng cao chất lượng học tập. Đề thi chọn HSG Toán lớp 10 năm 2018 - 2019 trường THPT Thị xã Quảng Trị là một bài thi tự luận, gồm 4 bài toán trên 1 trang giấy. Bài thi có tổng điểm là 20 và thời gian làm bài là 180 phút. Đề thi cũng có lời giải chi tiết, giúp học sinh hiểu rõ vấn đề và cách giải. Một trong các câu hỏi trong đề thi là: Trong mặt phẳng tọa độ Oxy, cho hình thang cân ABCD có hai đáy là AD, BC và AD > BC. Biết AB = BC, AD = 7. Đường chéo AC có phương trình là x - 3y - 3 = 0, điểm M(-2;-5) thuộc đường thẳng AD. Tìm tọa độ đỉnh D biết đỉnh B(1;1). Cho tam giác ABC đều có độ dài cạnh bằng 3. Trên các cạnh BC, CA lần lượt lấy các điểm N, M, sao cho BN = 1, CM = 2. a) Phân tích véc tơ AN theo hai vectơ AB, AC. b) Trên cạnh AB lấy điểm P (P khác A, P khác B) sao cho AN vuông góc với PM. Tính tỉ số AP/AB. Cho Parabol (P): y = x^2 + bx + c. 1) Tìm b, c để Parabol (P) có đỉnh S(-1/2;-5/4). 2) Với b, c tìm được ở câu 1. Tìm m để đường thẳng Δ: y = -2x - m cắt Parabol (P) tại hai điểm phân biệt A, B sao cho tam giác OAB vuông tại O (với O là gốc tọa độ). Đây là một trong những câu hỏi trong đề thi chọn HSG Toán lớp 10 năm 2018 - 2019 trường THPT Thị xã Quảng Trị. Những học sinh giỏi và năng động sẽ được chọn vào đội tuyển học sinh giỏi của trường để được bồi dưỡng và phát triển. Chúc các em học sinh thành công trong kỳ thi!
Đề thi HSG tỉnh lớp 10 môn Toán THPT năm 2018 2019 sở GD ĐT Hải Dương
Nội dung Đề thi HSG tỉnh lớp 10 môn Toán THPT năm 2018 2019 sở GD ĐT Hải Dương Bản PDF - Nội dung bài viết Đề thi HSG tỉnh Toán lớp 10 THPT năm 2018 – 2019 sở GD&ĐT Hải Dương Đề thi HSG tỉnh Toán lớp 10 THPT năm 2018 – 2019 sở GD&ĐT Hải Dương Thứ Tư ngày 03 tháng 04 năm 2019, sở Giáo dục và Đào tạo tỉnh Hải Dương đã tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 10 khối THPT năm học 2018 – 2019. Mục tiêu của kỳ thi là tuyển chọn những em học sinh xuất sắc từ các trường THPT tại Hải Dương để khen thưởng và tạo ra đội tuyển học sinh giỏi môn Toán lớp 10 cấp tỉnh. Đề thi HSG tỉnh Toán lớp 10 THPT năm 2018 – 2019 sở GD&ĐT Hải Dương được biên soạn theo hình thức tự luận với 05 bài toán. Thời gian làm bài thi là 180 phút, đề thi cung cấp lời giải chi tiết và thang điểm. Trích dẫn một số câu hỏi từ đề thi: Một xưởng sản xuất hai loại sản phẩm loại I và loại II từ 200kg nguyên liệu và một máy chuyên dụng. Cần sản xuất bao nhiêu kilôgam sản phẩm mỗi loại để tiền lãi lớn nhất? Cho tam giác nhọn ABC, chứng minh rằng (sinA)^2 + (sinB)^2 + (sinC)^2 = 9/4 khi biết rằng S_ΔABC = 4.S_ΔHEK với H, E, K lần lượt là chân đường cao từ các đỉnh A, B, C. Tính tọa độ các đỉnh A, B, C của tam giác ABC cân tại A khi biết AB: x + y – 3 = 0, AC: x – 7y + 5 = 0 và điểm M(1;1;0) thuộc cạnh BC. Đề thi được thiết kế để kiểm tra khả năng thực hành và hiểu biết sâu sắc của học sinh về các vấn đề Toán học. Hy vọng rằng các em học sinh sẽ tự tin và thành công trong kỳ thi này.
Đề thi học sinh giỏi lớp 10 môn Toán năm học 2018 2019 sở GD ĐT Hà Tĩnh
Nội dung Đề thi học sinh giỏi lớp 10 môn Toán năm học 2018 2019 sở GD ĐT Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 10 năm học 2018 – 2019 sở GD&ĐT Hà Tĩnh Đề thi học sinh giỏi Toán lớp 10 năm học 2018 – 2019 sở GD&ĐT Hà Tĩnh Ngày 21 tháng 03 năm 2019, sở Giáo dục và Đào tạo Hà Tĩnh đã tổ chức kỳ thi chọn học sinh giỏi Toán lớp 10 năm học 2018 – 2019. Đề thi được biên soạn theo hình thức tự luận với 05 bài toán, thời gian làm bài thi là 180 phút. Kỳ thi nhằm tuyển chọn các em học sinh lớp 10 giỏi môn Toán tại các trường THPT tại tỉnh Hà Tĩnh để thành lập đội tuyển học sinh giỏi Toán lớp 10 cấp tỉnh, tham dự kỳ thi học sinh giỏi Toán lớp 10 cấp Quốc gia. Trích dẫn đề thi học sinh giỏi Toán lớp 10 năm học 2018 – 2019 sở GD&ĐT Hà Tĩnh: + Một người nông dân có một khu đất rất rộng dọc theo một con sông. Người đó muốn làm một cái hàng rào hình chữ E để được một khu đất gồm hai phần đất hình chữ nhật để trồng rau và nuôi gà. Chi phí nguyên vật liệu cho hàng rào song song với bờ sông là 80 ngàn đồng/mét và cho phần còn lại là 40 ngàn đồng/mét. Tính diện tích lớn nhất của phần đất mà người nông dân rào được với chi phí nguyên vật liệu là 20 triệu đồng. + Cho tam giác ABC có chu vi bằng 20, góc BAC bằng 60 độ, bán kính đường tròn nội tiếp tam giác bằng 3. Gọi A1, B1, C1 lần lượt là hình chiếu vuông góc của A, B, C lên BC, AC, AB và M là điểm nằm trong tam giác ABC sao cho góc ABM = BCM = CAM = φ. Tính cotφ và bán kính đường tròn ngoại tiếp tam giác A1B1C1. + Cho phương trình (x^2 + ax + 1)^2 + a(x^2 + ax + 1) + 1 = 0, với a là tham số. Biết rằng phương trình có nghiệm thực duy nhất. Chứng minh rằng a > 2.