Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử tuyển sinh vào lớp 10 môn Toán năm 2022 sở GDĐT Lạng Sơn

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử tuyển sinh vào lớp 10 môn Toán THPT năm học 2022 – 2023  sở Giáo dục và Đào tạo tỉnh Lạng Sơn; kỳ thi được diễn ra vào sáng thứ Năm ngày 12 tháng 05 năm 2022. Trích dẫn đề thi thử tuyển sinh vào lớp 10 môn Toán năm 2022 sở GD&ĐT Lạng Sơn : + Cho phương trình bậc hai với m là tham số. a) Chỉ ra các hệ số abc của phương trình. b) Chứng minh rằng với mọi m thì phương trình đã cho luôn có hai nghiệm phân biệt. Khi đó tìm m để. + Cho đường tròn tâm O đường kính AB. Trên tia AB lấy điểm C sao cho AC > AB. Dựng đường thẳng d qua C và vuông góc với AB. Trên đường tròn (O) lấy điểm M (M khác A và B). Gọi H và K lần lượt là giao điểm của AM và MB với d. Gọi N là giao điểm của AK với đường tròn (O). 1) Chứng minh tứ giác BCKN nội tiếp đường tròn. 2) Chứng minh CAH = CNB. 3) Chứng minh BH vuông góc AK. 4) Chứng minh rằng khi M di chuyển trên đường tròn (O) (với M khác A và B) thì AM.AH + AN.AK luôn có giá trị không đổi. + Lúc 7 giờ, bạn Dũng đi xe đạp từ nhà (điểm A) đến trường (điểm B) phải leo lên và xuống một con dốc (như hình vẽ bên dưới). Cho biết đoạn thẳng AB = 658m, góc A = 9°, góc B = 4°. Hỏi bạn Dũng đến trường lúc nào (giờ, phút)? Biết rằng vận tốc trung bình khi lên dốc là 5km/h và vận tốc trung bình khi xuống dốc là 16km/h (các kết quả được làm tròn đến chữ số thập phân thứ ba).

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Tây Ninh
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Tây Ninh Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2023 - 2024 sở GD&ĐT Tây Ninh Đề thi tuyển sinh môn Toán (chuyên) năm 2023 - 2024 sở GD&ĐT Tây Ninh Sytu hân hạnh giới thiệu đến quý thầy cô và các em học sinh đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 - 2024 của sở Giáo dục và Đào tạo tỉnh Tây Ninh, được tổ chức vào ngày 03 tháng 06 năm 2023. Đề thi gồm các câu hỏi sau: 1. Cho parabol (P): y = 2x^2 và đường thẳng (d): y = (7 - m)x + 3m - 3. Tìm các giá trị nguyên âm của m để (P) cắt (d) tại hai điểm phân biệt có hoành độ nhỏ hơn 4. 2. Cho đường tròn (O) đường kính AB. Trên (O) lấy hai điểm C, D nằm khác phía đối với AB và CD không đi qua O. Gọi E là giao điểm của AC và BD, F là giao điểm của AD và BC, I là trung điểm đoạn thẳng EF. Chứng minh IC là tiếp tuyến của (O). 3. Cho đường tròn (O) và điểm M nằm ngoài (O), vẽ tiếp tuyến MA và cắt tuyến MBC không đi qua O (MB < MC). Gọi H là hình chiếu vuông góc của A trên MO. a) Chứng minh: Tứ giác BHOC nội tiếp. b) Vẽ đường thẳng qua B song song với AC cắt các đường thẳng MA, AH lần lượt tại K, I. Chứng minh KB = BI. Hy vọng rằng đề thi sẽ giúp các em học sinh chuẩn bị tốt cho kỳ thi tuyển sinh sắp tới. Chúc các em thành công!
Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Lào Cai
Nội dung Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Lào Cai Bản PDF - Nội dung bài viết Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Lào Cai Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Lào Cai Chào quý thầy cô và các em học sinh! Sytu xin giới thiệu đến các bạn đề chính thức cho kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 của sở Giáo dục và Đào tạo tỉnh Lào Cai. Kỳ thi sẽ diễn ra vào ngày 03/06/2023. Dưới đây là một vài ví dụ trong đề thi: 1. Một cửa hàng nhập 10 sản phẩm gồm hai loại A và B về bán. Biết mỗi sản phẩm loại A nặng 9kg, mỗi sản phẩm loại B nặng 10kg và tổng khối lượng của tất cả các sản phẩm là 95kg. Hỏi cửa hàng đã nhập bao nhiêu sản phẩm mỗi loại? 2. Cho tam giác ABC vuông ở A, có đường cao AH. Biết góc ABC = 60°, độ dài BC = 40cm. a) Tính độ dài cạnh AB. b) Gọi điểm K thuộc đoạn thẳng AC sao cho HK vuông góc với AC. Tính độ dài đoạn HK. 3. Cho tam giác ABC có ba góc nhọn (BA < BC) và nội tiếp đường tròn tâm O. Hai tiếp tuyến của đường tròn (O) tại A và C cắt nhau tại I. Tia BI cắt đường tròn (O) tại điểm thứ hai là D. a) Chứng minh rằng tứ giác OAIC nội tiếp. b) Chứng minh IC2 = IB.ID. c) Gọi M là trung điểm của BD. Tia CM cắt đường tròn (O) tại điểm thứ hai là E. Chứng minh rằng: MO vuông góc AE. Các em học sinh hãy cố gắng làm bài thật tốt để chinh phục kỳ thi sắp tới. Chúc quý thầy cô và các em thành công!
Đề tuyển sinh môn Toán năm 2023 2024 sở GD ĐT Thừa Thiên Huế
Nội dung Đề tuyển sinh môn Toán năm 2023 2024 sở GD ĐT Thừa Thiên Huế Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2023 - 2024 sở GD ĐT Thừa Thiên Huế Đề tuyển sinh môn Toán năm 2023 - 2024 sở GD ĐT Thừa Thiên Huế Xin chào quý thầy cô và các em học sinh! Hôm nay Sytu xin giới thiệu đến các bạn đề chính thức cho kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 - 2024 của sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế. Kỳ thi sẽ diễn ra vào ngày 3 tháng 6 năm 2023. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GD&ĐT Thừa Thiên Huế: + Bài toán 1: Một người đi xe đạp với vận tốc không đổi từ A đến B cách nhau 36 km. Trên cùng tuyến đường đó, khi đi từ B trở về A, người này đi với vận tốc lớn hơn 3 km/h so với vận tốc khi đi từ A đến B vì vậy thời gian về ít hơn thời gian đi là 36 phút. Hãy tính vận tốc của người đi xe đạp khi đi từ A đến B. + Bài toán 2: Cho tam giác ABC có ba góc nhọn, AB > AC và nội tiếp đường tròn (O). Tiếp tuyến của đường tròn (O) tại A cắt đường thẳng BC tại D. Gọi E là hình chiếu vuông góc của O trên đường thẳng BC. a) Chứng minh rằng tứ giác AOED là tứ giác nội tiếp. b) Chứng minh rằng DF là tiếp tuyến của đường tròn (O) và AB*FB = AC*FC. c) Chứng minh rằng ba điểm A, F, G thẳng hàng, với G là điểm đầu tiên của tiếp tuyến của đường tròn (O) tại B và C. + Bài toán 3: Cho tam giác OBC vuông tại O. Nếu quay tam giác OBC một vòng quanh cạnh OB cố định thì được một hình nón có thể tích bằng 800π cm3. Nếu quay tam giác OBC một vòng quanh cạnh OC cố định thì được một hình nón có thể tích bằng 1920π cm3. Hãy tính độ dài của cạnh OB và OC. Hy vọng các em sẽ tự tin và thành công trong kỳ thi sắp tới! Chúc các em học tốt!
Đề tuyển sinh chuyên môn Toán năm 2023 2024 sở GD ĐT Trà Vinh
Nội dung Đề tuyển sinh chuyên môn Toán năm 2023 2024 sở GD ĐT Trà Vinh Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán năm 2023 2024 sở GD ĐT Trà Vinh Đề tuyển sinh chuyên môn Toán năm 2023 2024 sở GD ĐT Trà Vinh Chúng tôi xin giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Trà Vinh; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023. Dưới đây là một số câu hỏi trích dẫn từ đề tuyển sinh lớp 10 chuyên môn Toán năm 2023 – 2024 sở GD&ĐT Trà Vinh: 1. Cho phương trình \(x^2 - 2(m - 1)x + 2m - 3 = 0\) (trong đó \(x\) là biến và \(m\) là tham số). a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi giá trị của tham số \(m\). b) Tìm giá trị của \(m\) để phương trình có hai nghiệm \(x1, x2\) thỏa mãn \((x1 - 2)(2x1 + 3x2 - 3x1x2 + 2m) = 0. 2. Cho tam giác \(ABC\) có ba góc nhọn nội tiếp đường tròn \(O\). Các đường cao \(BD\) và \(CE\) cắt nhau tại \(H\). Các đường thẳng \(DE\) và \(CB\) cắt nhau tại \(M\), \(AM\) cắt \(O\) tại \(N\) (\(N\) khác \(A\)). Chứng minh rằng: a) Tứ giác \(BCDE\) nội tiếp và \(MB \times MC = MD \times ME\). b) Góc \(MDN = MAE\). c) \(HN\) vuông góc \(AM\). 3. Cho các số thực \(a, b\) thỏa mãn \(a^2 + b^2 = 4\). Tìm giá trị nhỏ nhất của biểu thức \(T = 4 + 4ab - a^4 - b^4\).