Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Ứng dụng tích phân trong bài toán tính thể tích vật thể với dữ kiện toán thực tế

Tài liệu gồm 25 trang, được biên soạn bởi nhóm tác giả Toán Học Bắc Trung Nam, hướng dẫn giải các bài toán ứng dụng tích phân trong bài toán tính thể tích vật thể với dữ kiện toán thực tế, đây là dạng toán vận dụng cao (VDC) thường gặp trong chương trình Giải tích 12 chương 3: Nguyên hàm, tích phân và ứng dụng; các bài toán trắc nghiệm trong tài liệu đều có đáp án và lời giải chi tiết. A. KIẾN THỨC CƠ BẢN 1. Thể tích vật thể Gọi B là phần vật thể giới hạn bởi hai mặt phẳng vuông góc với trục Ox tại các điểm a và b; S x là diện tích thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm x a x b. Giả sử S x là hàm số liên tục trên đoạn a b. Khi đó thể tích của vật thể B được xác định: b a V S x dx. 2. Thể tích khối tròn xoay Thể tích khối tròn xoay được sinh ra khi quay hình phẳng giới hạn bởi các đường y f x trục hoành và hai đường thẳng x a x b quanh trục Ox: Lưu ý: – Thể tích khối tròn xoay được sinh ra khi quay hình phẳng giới hạn bởi các đường x g y trục hoành và hai đường thẳng y c y d quanh trục Oy: c y O d x : : C x g y Oy x 0 y c y d 2 d y c V g y dy : : C y f x Ox y 0 x a x b 2 b x a V f x dx a y f x y O b x b a V S x dx O a b x V S(x) x. Thể tích khối tròn xoay được sinh ra khi quay hình phẳng giới hạn bởi các đường y f x y g x và hai đường thẳng x a x b quanh trục Ox: 2 2 b a V f x g x dx. B. BÀI TẬP Một bồn hình trụ chứa dầu được đặt nằm ngang, có chiều dài 5m, bán kính đáy 1m, với nắp bồn đặt trên mặt nằm ngang của mặt trụ. Người ta rút dầu trong bồn tương ứng với 0,5m của đường kính đáy. Có một vật thể là hình tròn xoay có dạng giống như một cái ly như hình vẽ dưới đây. Người ta đo được đường kính của miệng ly là 4cm và chiều cao là 6cm. Biết rằng thiết diện của chiếc ly cắt bởi mặt phẳng đối xứng là một parabol. Tính thể tích của vật thể đã cho. Trong một đợt xả lũ, nhà máy thủy điện đã xả lũ trong 40 phút với tốc độ lưu lượng nước tại thời điểm t giây là 3 v t t m s10 500. Hỏi sau thời gian xả lũ trên thì hồ thoát nước của nhà máy đã thoát đi một lượng nước là bao nhiêu?

Nguồn: toanmath.com

Đọc Sách

Tuyển chọn 280 câu hỏi trắc nghiệm nguyên hàm - tích phân - Phan Trung Hiếu
Tài liệu này được tổng hợp và sàng lọc từ các cuốn sách và từ một số nguồn tham khảo trên internet. Các câu hỏi được chia thành 3 cấp độ: Thân thương, Quen thuộc và Lạ phù hợp với thời gian của hình thức thi trắc nghiệm. Hy vọng tài liệu này sẽ giúp ích được cho giáo viên trong việc ra đề thi và các em học sinh trong việc học tập về chuyên đề nguyên hàm – tích phân. [ads]
Tổng hợp 980 câu trắc nghiệm nguyên hàm, tích phân và ứng dụng - Nguyễn Bảo Vương
Tài liệu tuyển chọn 980 bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng có đáp án với độ khó từ cơ bản đến vận dung cao được sưu tầm, tổng hợp và biên soạn bởi thầy Nguyễn Bảo Vương. Tài liệu được chia thành 6 phần, phân dạng rõ các bài cơ bản và nâng cao. Ngoài phần bài tập còn có lý thuyết, phân dạng và các ví dụ mẫu có lời giải chi tiết. Các dạng toán nguyên hàm – tích phân và ứng dụng được đề cập trong tài liệu gồm: [ads] + Dạng 1. Tìm nguyên hàm bằng phương pháp phân tích + Dạng 2. Tìm nguyên hàm bằng phương pháp đổi biến số + Dạng 3. Tìm nguyên hàm bằng phương pháp từng phần + Dạng 4. Tính tích phân bằng phương pháp phân tích + Dạng 5. Tính tích phân bằng phương pháp đổi biến số + Dạng 6. Tính tích phân bằng phương pháp từng phần + Dạng 7. Diện tích hình phẳng giới hạn + Dạng 8. Thể tích hình phẳng giới hạn
55 câu trắc nghiệm nguyên hàm, tích phân và ứng dụng - Đoàn Trí Dũng
Tài liệu gồm 8 trang với 55 bài tập trắc nghiệm nguyên hàm – tích phân và ứng dụng có đáp án, tài liệu do thầy Đoàn Trí Dũng biên soạn. Trích dẫn tài liệu : + Hình phẳng được tô màu ở trong hình vẽ bên được giới hạn bởi một đồ thị hàm số bậc ba với một đường thẳng (d) cùng với trục hoành và trục tung. Cho hình phẳng đó quay quanh trục hoành. Thể tích của khối tròn xoay thu được có giá trị gần với giá trị nào nhất sau đây? A. 51.22   B. 48.02 C. 46.44   D. 42.18 [ads] + Một ô tô đang chạy với vận tốc 10m/s thì người lái đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc v(t) = -5t + 10 m/s, trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi đến khi dừng hẳn, ô tô đã đi được quãng đường là bao nhiêu mét? A. 0,2m   B. 2m C. 10m   D. 20m + Người ta thiết kế đầu đạn của một quả bom là một khối tròn xoay đặc, được khoét vào trong. Biết rằng thiết diện qua trục đối xứng của đầu đạn là hai Parabol với các kích thước như hình vẽ dưới đây. Tính thể tích của đầu đạn đó?
600 câu hỏi trắc nghiệm chuyên đề tích phân và ứng dụng - Nhóm Toán
Tài liệu tuyển chọn 600 câu hỏi trắc nghiệm chuyên đề tích phân và ứng dụng có đáp án được biên soạn bởi các thầy cô trên groups Nhóm Toán gồm 96 trang được chia thành 8 đề. Trích dẫn tài liệu : + Diện tích hình phẳng giới hạn bởi hai đường thẳng x = 0, x = π và đồ thị của hai hàm số y = cosx, y = sinx là: A. 2 + √2   B. 2 C. √2   D. 2√2 + Khẳng định nào sau đây đúng? A. Nếu w'(t) là tốc độ tăng trưởng cân nặng/năm của một đứa trẻ, thì tích phân từ 5 đến 10 của hàm số w'(t)dt là sự cân nặng của đứa trẻ giữa 5 và 10 tuổi. B. Nếu dầu rò rỉ từ 1 cái thùng với tốc độ r(t) tính bằng galông/phút tại thời gian t, thì tích phân từ 0 đến 120 của hàm số r(t)dt biểu thị lượng galông dầu rò rỉ trong 2 giờ đầu tiên. [ads] C. Nếu r(t) là tốc độ tiêu thụ dầu của thế giới, trong đó t được bằng năm, bắt đầu tại t = 0 vào ngày 1 tháng 1 năm 2000 và r(t) được tính bằng thùng/năm, tích phân từ 0 đến 17 của hàm số r(t)dt biểu thị số lượng thùng dầu tiêu thụ từ ngày 1 tháng 1 năm 2000 đến ngày 1 tháng 1 năm 2017. D. Cả A, B, C đều đúng. + Cho hàm số f(x) = sin2x.cosx và các mệnh đề sau: i) Họ nguyên hàm của hàm số là -2/3.(cosx)^3 + C ii) Họ nguyên hàm của hàm số là -1/6.cos3x – 1/2cosx + C ii) Họ nguyên hàm của hàm số là -2/3.(cosx)^3 + C A. Chỉ có duy nhất một mệnh đề đúng B. Có hai mệnh đề đúng C. Không có mệnh đề nào đúng D. Cả ba mệnh đều đều đúng