Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải các dạng toán chuyên đề phân số

Tài liệu gồm 75 trang, được biên soạn bởi thầy giáo Ngô Nguyễn Thanh Duy, phân dạng và hướng dẫn giải các dạng toán chuyên đề phân số trong chương trình Số học 6. Khái quát nội dung tài liệu phương pháp giải các dạng toán chuyên đề phân số: BÀI 1 . MỞ RỘNG KHÁI NIỆM PHÂN SỐ. + Dạng 1. Biểu diễn phân số của một hình cho trước. + Dạng 2. Viết các phân số. + Dạng 3. Tính giá trị của phân số. + Dạng 4. Biểu thị các số đo theo đơn vị này dưới dạng phân số theo đơn vị khác. + Dạng 5. Viết tập hợp các số nguyên “kẹp” giữa hai phân số có tử là bội của mẫu. + Dạng 6. Tìm điều kiện để phân số tồn tại. Điều kiện để phân số có giá trị là số nguyên. BÀI 2 . PHÂN SỐ BẰNG NHAU. + Dạng 1. Nhận biết các cặp phân số bằng nhau, không bằng nhau. + Dạng 2. Tìm số chưa biết trong đẳng thức của hai phân số. + Dạng 3. Lập các cặp phân số bằng nhau từ một đẳng thức cho trước. BÀI 3 . TÍNH CHẤT CƠ BẢN CỦA PHÂN SỐ. + Dạng 1. Áp dụng tính chất cơ bản của phân số để viết các phân số bằng nhau. + Dạng 2. Tìm số chưa biết trong đẳng thức của hai phân số. + Dạng 3. Giải thích lí do bằng nhau của các phân số. BÀI 4 . RÚT GỌN PHÂN SỐ. + Dạng 1. Rút gọn phân số. Rút gọn biểu thức dạng phân số. + Dạng 2. Củng cố khái niệm phân số có kết hợp rút gọn phân số. + Dạng 3. Củng cố khái niệm hai phân số bằng nhau. + Dạng 4. Tìm phân số tối giản trong các phân số cho trước. + Dạng 5. Viết dạng tổng quát của tất cả các phân số bằng một phân số cho trước. + Dạng 6. Chứng minh một phân số là tối giản. BÀI 5 . QUY ĐỒNG MẪU NHIỀU PHÂN SỐ. + Dạng 1. Quy đồng mẫu các phân số cho trước. + Dạng 2. Bài toán đưa về việc quy đồng mẫu nhiều phân số. BÀI 6 . SO SÁNH PHÂN SỐ. + Dạng 1. So sánh các phân số cùng mẫu. + Dạng 2. So sánh các phân số không cùng mẫu. BÀI 7 . PHÉP CỘNG PHÂN SỐ. + Dạng 1. Cộng hai phân số. + Dạng 2. Điền dấu thích hợp vào ô vuông. + Dạng 3. Tìm số chưa biết trong một đẳng thức có chứa phép phép cộng phân số. + Dạng 4. So sánh phân số bằng cách sử dụng phép cộng phân số thích hợp. BÀI 8 . TÍNH CHẤT CƠ BẢN CỦA PHÉP CỘNG PHÂN SỐ. + Dạng 1 . Áp dụng các tính chất của phép cộng để tính nhanh tổng của nhiều phân số. + Dạng 2. Cộng nhiều phân số. + Dạng 3. Rèn luyện kĩ năng cộng hai phân số. BÀI 9 . PHÉP TRỪ PHÂN SỐ. + Dạng 1. Tìm số đối của một số cho trước. + Dạng 2. Trừ một phân số cho một phân số. + Dạng 3. Tìm số hạng chưa biết trong một tổng, một hiệu. + Dạng 4. Bài toán dẫn đến phép cộng phép trừ phân số. + Dạng 5. Thực hiện một dãy tính cộng và tính trừ phân số. BÀI 10 . PHÉP NHÂN PHÂN SỐ. + Dạng 1. Thực hiện phép nhân phân số. + Dạng 2. Viết một phân số dưới dạng tích của hai phân số thỏa mãn điều kiện cho trước. + Dạng 3. Tìm số chưa biết trong một đẳng thức có chứa phép nhân phân số. + Dạng 4. So sánh giá trị hai biểu thức. [ads] BÀI 11 . TÍNH CHẤT CƠ BẢN CỦA PHÉP NHÂN PHÂN SỐ. + Dạng 1. Thực hiện phép nhân phân số. + Dạng 2. Tính giá trị biểu thức. + Dạng 3. Bài toán dẫn đến phép nhân phân số. BÀI 12 . PHÉP CHIA PHÂN SỐ. + Dạng 1. Tìm số nghịch đảo của một số cho trước. + Dạng 2. Thực hiện phép chia phân số. + Dạng 3. Viết một phân số dưới dạng thương của hai phân số thỏa mãn điện kiện cho trước. + Dạng 4. Tìm số chưa biết trong một tích, một thương. + Dạng 5. Bài toán dẫn đến phép chia phân số. + Dạng 6. Tính giá trị của biểu thức. BÀI 13 . HỖN SỐ. SỐ THẬP PHÂN. PHẦN TRĂM. + Dạng 1. Viết phân số dưới dạng hỗn số và ngược lại. + Dạng 2. Viết các số đã cho dưới dạng phân số thập phân. Số thập phân, phần trăm và ngược lại. + Dạng 3. Cộng, trừ hỗn số. + Dạng 4 . Nhân, chia hỗn số. + Dạng 5. Tính giá trị của biểu thức số. + Dạng 6. Các phép tính về số thập phân. BÀI 14 . TÌM GIÁ TRỊ PHÂN SỐ CỦA MỘT SỐ CHO TRƯỚC. + Dạng 1. Tìm giá trị phân số của một số cho trước. + Dạng 2. Bài toán dẫn đến tìm giá trị phân số của một só cho trước. BÀI 15 . TÌM MỘT SỐ BIẾT GIÁ TRỊ MỘT PHÂN SỐ CỦA NÓ. + Dạng 1. Tìm một số biết giá trị một phân số của nó. + Dạng 2. Bài toán dẫn đến tìm một số biết giá trị một phân số của nó. + Dạng 3. Tìm số chưa biết trong một tổng, một hiệu. BÀI 16 . TÌM TỈ SỐ CỦA HAI SỐ. + Dạng 1. Các bài tập có liên quan đến tỉ số của hai số. + Dạng 2. Các bài tập liên quan đến tỉ số phần trăm. + Dạng 3. Các bài tập có liên quan đến tỉ lệ xích. BÀI 17 . BIỂU ĐỒ PHẦN TRĂM. + Dạng 1. Dựng biểu đồ phần trăm theo các số liệu cho trước. + Dạng 2. Đọc biểu đồ cho trước. + Dạng 3. Tính tỉ số phần trăm của các số cho trước.

Nguồn: toanmath.com

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm chu vi và diện tích của một số tứ giác đã học
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề chu vi và diện tích của một số tứ giác đã học, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Chu vi và diện tích các hình. a) Hình vuông: Hình vuông ABCD có cạnh bằng a thì: + Chu vi của hình vuông là C a 4. + Diện tích của hình vuông là 2 S a a a. b) Hình chữ nhật: Hình chữ nhật ABCD có chiều dài là a, chiều rộng bằng b thì: + Chu vi của hình chữ nhật là C 2 a b. + Diện tích của hình chữ nhật là S a b. c) Hình thoi: Hình thoi ABCD có độ dài cạnh là a và độ dài hai đường chéo là m và n thì: + Chu vi của hình thoi là C a 4. + Diện tích của hình thoi là 2 1 S m n. d) Hình bình hành: Hình bình hành ABCD có độ dài hai cạnh là a, b và độ dài đường cao ứng với cạnh a là h thì: + Chu vi của hình bình hành là C 2 a b. + Diện tích của hình bình hành là S a h. e) Hình thang cân: Hình thang cân ABCD có độ dài hai cạnh đáy là a, b; độ dài cạnh bên là c và độ dài đường cao ứng với cạnh đáy là h thì: + Chu vi của hình thang cân là C a b 2c. + Diện tích của hình bình thang cân là 2 S a b h. 2. Các dạng toán thường gặp. Dạng 1: Tính diện tích các hình đã học. Áp dụng công thức tính diện tích của các hình. Dạng 2: Tính một yếu tố của hình khi biết chu vi, diện tích của hình đó. Từ công thức tính chu vi, diện tích các hình, thay các đại lượng đã biết vào công thức rồi rút ra đại lượng cần tính. Dạng 3: Bài toán thực tế. Sắp xếp được mối liên hệ giữa các kiến thức đã học để giải bài toán. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm hình chữ nhật, hình thoi, hình bình hành, hình thang cân
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề hình chữ nhật, hình thoi, hình bình hành, hình thang cân, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Hình chữ nhật. Hình chữ nhật ABCD có: + Bốn đỉnh: A, B, C, D. + Hai cạnh đối diện song song: AB song song với CD, BC song song với AD. + Hai cạnh đối diện bằng nhau: AD = BC; AB = DC. + Bốn góc đỉnh A, B, C, D bằng nhau và bằng góc vuông. + Hai đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường: OA = OC = OB = OD. 2. Hình thoi. Hình thoi ABCD có: + Bốn đỉnh: A, B, C, D. + Hai cạnh đối diện song song: AB song song với CD, BC song song với AD. + Bốn cạnh bằng nhau: AD = BC = AB = DC. + Hai đường chéo vuông góc với nhau: AC, BD vuông góc với nhau. 3. Hình bình hành. Hình bình hành ABCD có: + Bốn đỉnh: A, B, C, D. + Hai cạnh đối diện song song: AB song song với CD, BC song song với AD. + Hai cạnh đối diện bằng nhau: AD = BC; AB = DC. + Hai cặp góc đối diện bằng nhau: góc đỉnh A bằng góc đỉnh C, góc đỉnh B bằng góc đỉnh D. + Hai đường chéo cắt nhau tại trung điểm mỗi đường: OA = OC = OB = OD. 4. Hình thang cân. Hình thang cân ABCD có: + Bốn đỉnh: A, B, C, D. + Hai cạnh đáy song song: AB song song với CD. + Hai cạnh bên bằng nhau: AD = BC. + Hai góc kề 1 đáy bằng nhau: góc đỉnh A bằng góc đỉnh C, góc đỉnh B bằng góc đỉnh D. + Hai đường chéo bằng nhau: AC = BD. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm hình tam giác đều, hình vuông, hình lục giác đều
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề hình tam giác đều, hình vuông, hình lục giác đều, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Hình vuông. Hình vuông ABCD có: + Bốn đỉnh A B C D. + Bốn cạnh bằng nhau AB BC CD DA. + Bốn góc bằng nhau và bằng góc vuông. + Hai đường chéo là AC và BD. 2. Tam giác đều. Tam giác đều ABC có: + Ba đỉnh A B C. + Ba cạnh bằng nhau AB BC CA. + Ba góc đỉnh A B C bằng nhau. 3. Lục giác đều. Hình ABCDEF gọi là hình lục giác đều có: + Sáu đỉnh A, B, C, D, E, F. + Sáu cạnh bằng nhau AB BC CD DE EF FA. + Sáu góc đỉnh A, B, C, D, E, F bằng nhau. Ba đường chéo chính là AD, BE, CF. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm phép chia hết, ước và bội của một số nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề phép chia hết, ước và bội của một số nguyên, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Phép chia hết. Với a b b 0 nếu có số nguyên q sao cho a bq thì ta có phép chia hết a b q và ta nói a chia hết cho b, kí hiệu là a b. Thương của hai số nguyên trong phép chia hết là một số dương nếu hai số đó cùng dấu và là một số âm khi hai số đó khác dấu. 2. Ước và bội. Nếu a b thì ta gọi a là một bội của b và b là một ước của a a b b. Nếu a là một bội của b thì -a cũng là một bội của b. Nếu b là một ước của a thì -b cũng là một ước của a. Chú ý: Số 0 là bội của mọi số nguyên khác 0. Số 0 không phải là ước của bất kì số nguyên nào. Các số 1 và -1 là ước của mọi số nguyên. Nếu d vừa là ước của a, vừa là ước của b thì ta gọi d là một ước chung của a và b a b d d. Trong tập hợp các số nguyên cũng có các tính chất về chia hết tương tự như trong tập số tự nhiên. 3. Cách chia hai số nguyên (trường hợp chia hết). a. Nếu số bị chia bằng 0 và số chia khác 0 thì thương bằng 0. b. Nếu chia hai số nguyên khác 0 thì: Bước 1: Chia phần tự nhiên của hai số. Bước 2: Đặt dấu “+” trước kết quả nếu hai số cùng dấu. Đặt dấu “-” trước kết quả nếu hai số trái dấu. 4. Cách tìm ước và bội. Muốn tìm tất cả các ước của một số nguyên a, ta lấy các ước dương của a cùng với các số đối của chúng. Muốn tìm các bội của một số nguyên, ta nhân số đó với 0; 1; 2; 3; …. B. BÀI TẬP TRẮC NGHIỆM Dạng 1: Tìm bội và ước của một nguyên. Để tìm bội của một số nguyên, ta nhân số đó với 0; 1; 2; 3; …. Để tìm ước của một số nguyên dương, ta phân tích số đó ra thừa số nguyên tố rồi tìm các ước tự nhiên và số đối của các ước đó. Để tìm ước của một số nguyên âm, ta phân tích phần tự nhiên của số đó (hoặc số đối của số đó) ra thừa số nguyên tố rồi tìm các ước tự nhiên và số đối của các ước đó. Dạng 2: Xét tính chia hết của một tổng, hiệu và tích cho một số. Cho a b c c Nếu a c a b c Nếu a c b c a b c a b c Nếu a c b. Chú ý : a c b c thì không thế kết luận được về tính chia hết của a b a b cho c. Dạng 3: Tìm số nguyên x thỏa mãn điều kiện chia hết. Phương pháp: Cho a b c c Nếu a b c b c Nếu a c b c a b c Nếu a c a b. Chú ý: a c và a b c thì không thế kết luận được về tính chia hết của b cho c.