Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Thọ Xuân - Thanh Hoá

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thọ Xuân, tỉnh Thanh Hoá; kỳ thi được diễn ra vào ngày 12 tháng 03 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Thọ Xuân – Thanh Hoá : + Lúc 8 giờ, An rời nhà mình để đến nhà Bích với vận tốc 4km/h. Lúc 8 giờ 20 phút, Bích cũng rời nhà mình để đến nhà An với vận tốc 3 km/h. An gặp Bích trên đường, rồi cả hai cùng đi về nhà Bích. An ở nhà Bích chơi một thời gian rồi đi về một mình. Về đến nhà An tính ra quãng đường mình đã đi dài gấp bốn lần quãng đường Bích đã đi. Tính quãng đường từ nhà An đến nhà Bích (với giả thiết An và Bích cùng đi trên một quãng đường). + Cho hình vuông ABCD và điểm H thuộc cạnh BC (H không trùng với B và C). Trên nửa mặt phẳng bờ BC không chứa hình vuông ABCD dựng hình vuông CHIK. Gọi M là giao điểm DH và BK ; N là giao điểm KH và BD. 1. Chứng minh DH vuông góc với BK và DN DB DC DK. 2. Chứng minh BHD BHK DHK BH S S HC S và 6. BH DH KH HC HM HN 3. Gọi P là giao điểm của CN và DH. Qua P kẻ đường thẳng song song với BD cắt BC, BK lần lượt tại E, Q. Chứng minh E là trung điểm của PQ. + Tìm các cặp số nguyên (x;y) thỏa mãn x2 − 4xy + 5y2 – 16 = 0. Giả sử p, q là 2 số nguyên tố thỏa mãn đồng thời các điều kiện p q 3 p q 2. Chứng minh rằng 3 3 p q chia hết cho 36.

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG Olympic Toán 8 năm 2020 - 2021 phòng GDĐT Quỳnh Lưu - Nghệ An
Đề thi HSG Olympic Toán 8 năm 2020 – 2021 phòng GD&ĐT Quỳnh Lưu – Nghệ An gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề thi HSG Olympic Toán 8 năm 2020 – 2021 phòng GD&ĐT Quỳnh Lưu – Nghệ An : + Tìm cặp số nguyên x, y thỏa mãn. + Hai bạn Lan và Hoa vào cửa hàng sách, Lan mua một số quyển vở, Hoa không những mua gấp đôi số quyển vở của Lan mua mà còn nhiều hơn một quyển nữa. Tính số quyển vở mỗi bạn mua. Biết rằng số quyển vở Lan mua là một số nguyên tố, số quyển vở Hoa mua là lập phương của một số tự nhiên. + Một tam giác có độ dài ba cạnh là a, b, c và chu vi là 2. Chứng minh rằng: a2 + b2 + c2 + 2abc < 2.
Đề thi HSG Toán 8 năm 2020 - 2021 phòng GDĐT thành phố Vinh - Nghệ An
Ngày … tháng 04 năm 2021, phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An tổ chức kỳ thi khảo sát chất lượng học sinh giỏi môn Toán lớp 8 năm học 2020 – 2021. Đề thi HSG Toán 8 năm 2020 – 2021 phòng GD&ĐT thành phố Vinh – Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề thi HSG Toán 8 năm 2020 – 2021 phòng GD&ĐT thành phố Vinh – Nghệ An : + Chứng minh rằng: 11^100 – 1 chia hết cho 1000. + Biết đa thức f(x) chia cho đa thức x – 2 dư 7, chia cho đa thức x^2 + 1 dư 3x + 5. Tìm dư trong phép chia đa thức f(x) cho đa thức (x2 + 1)(x – 2). + Cho tam giác ABC vuông tại A (AB < AC), đường cao AH (H thuộc BC). Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC tại D cắt AC ở E. a. Chứng minh rằng tam giác BEC đồng dạng với tam giác ADC. b. Gọi M là trung điểm của BE. Chứng minh rằng BM.BE = BC.BH. Tính số đo góc AHM. c. Tia AM cắt BC tại G. Chứng minh rằng GB.AH + GB.HC = BC.HD.
Đề thi Olympic Toán 8 cấp huyện năm 2020 - 2021 phòng GDĐT Ba Vì - Hà Nội
Thứ Năm ngày 22 tháng 04 năm 2021, phòng GD&ĐT huyện Ba Vì, thành phố Hà Nội tổ chức kỳ thi Olympic cấp huyện môn Toán lớp 8 năm học 2020 – 2021. Đề thi Olympic Toán 8 cấp huyện năm 2020 – 2021 phòng GD&ĐT Ba Vì – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi Olympic Toán 8 cấp huyện năm 2020 – 2021 phòng GD&ĐT Ba Vì – Hà Nội : + Tìm các số nguyên x, y thỏa mãn: xy – 4 = 2x + 3y. + Tìm các số nguyên x sao cho A = x(x – 1)(x – 7)(x – 8) là một số chính phương. + Cho hình thoi ABCD có BAD = 60°. Qua C vẽ đường thẳng d bất kì không cắt cạnh của hình thoi ABCD, nhưng d cắt tia AB tại E và cắt tia AD tại F. a) Chứng minh BCE đồng dạng DFC. b) Chứng minh BD2 = BE.DF. c) Gọi I là giao điểm của BF và DE. Tính số đo góc EIF.
Đề thi Olimpic Toán 8 năm 2020 - 2021 phòng GDĐT Quốc Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olimpic Toán 8 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội. Trích dẫn đề thi Olimpic Toán 8 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội : + Cho a, b là bình phương của 2 số nguyên lẻ liên tiếp. Chứng minh: ab – a – b + 1 chia hết cho 48. + Một mảnh đất hình thang ABCD có AB//CD, AB = BC = AD = a, CD = 2a. a/ Tính các góc của hình thang ABCD. b/ Tính diện tích của hình thang ABCD theo a. c/ Hãy chia mảnh đất ABCD thành 4 mảnh đất hình thang giống hệt nhau bằng nhau. + Cho tam giác ABC. Trên cạnh AB lấy D, trên cạnh AC lấy E sao cho AD = AB, CE = 1/3.AC, CD và BE cắt nhau tại I. Tính các tỷ số.