Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 năm 2023 - 2024 trường THCS Lê Thị Hồng Gấm - Đà Nẵng

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THCS Lê Thị Hồng Gấm, quận Thanh Khê, thành phố Đà Nẵng; kỳ thi được diễn ra vào ngày 13 tháng 05 năm 2023. Trích dẫn Đề thi thử Toán vào 10 năm 2023 – 2024 trường THCS Lê Thị Hồng Gấm – Đà Nẵng : + Cho hai hàm số 2 y x và y x 2 3. a) Vẽ đồ thị của các hàm số này trên cùng một mặt phẳng tọa độ Oxy. b) Gọi A và B là hai giao điểm của hai đồ thị đó. Tìm tọa độ điểm C thuộc trục Oy sao cho diện tích của tam giác ABC bằng 8 cm2 (đơn vị đo trên các trục tọa độ là xen-ti-mét). + Hai đội thủy lợi A và B cùng đào một con mương. Nếu mỗi đội làm một mình cả con mương thì tổng thời gian hai đội phải làm là 25 ngày, trong đó số ngày để đội A hoàn thành công việc nhiều hơn đội B. Nếu hai đội cùng làm thì công việc được hoàn thành trong 6 ngày. Hãy tính thời gian để mỗi đội làm một mình xong cả con mương. + Cho đường tròn (O; R) và dây cung BC cố định không đi qua O. Điểm A thuộc cung lớn BC sao cho AB < AC. Hai đường cao BE và CF của tam giác ABC cắt nhau tại H. a) Chứng minh tứ giác BCEF là tứ giác nội tiếp. b) Đường thẳng qua A song song với EF, cắt đường trung trực của đoạn thẳng AB tại S. Vẽ đường kính AK của đường tròn (O; R), đường thẳng SK cắt đường tròn (O; R) tại điểm thứ hai là G. Tính BK AG BG theo R. c) Gọi M là giao điểm của AH và BC, I là điểm đối xứng với A qua EF. Chứng minh đường tròn ngoại tiếp tam giác HMI luôn đi qua một điểm cố định khi A thay đổi trên cung lớn BC.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Tây Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Tây Ninh; kỳ thi được diễn ra vào thứ Ba ngày 08 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Tây Ninh : + Cho tứ giác ABCD (ABC, BCD là các tam giác nhọn) nội tiếp đường tròn có AC và BD cắt nhau tại E. Gọi M N và I lần lượt là trung điểm của CD, CE và DE. a) Chứng minh IAE = EBN. b) Gọi J là giao điểm của A và BN; đường thẳng JM cắt AC và BD lần lượt tại K và L. Chứng minh JE là tiếp tuyến của đường tròn ngoại tiếp tam giác EKL. + Cho tứ giác ABCD có ABD = 29°; ADB = 41°; DC = 58 và ACB = 82°. Tính ABC. + Cho x, y, z là các số thực thỏa mãn 0 < x, y, z < 1. Tìm giá trị lớn nhất của biểu thức T = 2(x3 + y3 + z3) – (x2y + y2z + z2x).
Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2021 - 2022 sở GDĐT Tây Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2021 – 2022 sở GD&ĐT Tây Ninh; kỳ thi được diễn ra vào thứ Hai ngày 07 tháng 06 năm 2021; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2021 – 2022 sở GD&ĐT Tây Ninh : + Một đoàn khách du lịch gồm 40 người dự định tham quan đỉnh núi Bà Đen, nóc nhà Đông Nam Bộ bằng cáp treo khứ hồi (gồm lượt lên và lượt xuống). Nhưng khi tới nơi có 5 bạn trẻ muốn khám phá bằng đường bộ khi leo lên còn lúc xuống sẽ đi cáp treo để trải nghiệm nên 5 bạn chỉ mua vé lượt xuống, do đó đoàn đã chi ra 9.450.000 đồng để mua vé. Hỏi giá cáp treo khứ hồi và giá vé 1 lượt là bao nhiêu? Biết rằng giá vé 1 lượt rẻ hơn giá vé khứ hồi là 110.000 đồng. + Cho ∆ABC vuông tại A ngọi tiếp đường tròn (O). Gọi D E F lần lượt là các tiếp điểm của O với các cạnh AB AC và BC. Đường thẳng BO cắt đường thẳng EF tại I. Tính BIF. + Cho hình chữ nhật ABCD. Gọi M N lần lượt là trung điểm của các cạnh BC và CD. Gọi E là giao điểm của BN với AM và F là giao điểm của BN với DM; DM cắt AN tại K. Chứng minh điểm A nằm trên đường tròn ngoại tiếp tam giác EFK.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 - 2022 trường chuyên Quốc học Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 trường THPT chuyên Quốc học Huế, tỉnh Thừa Thiên Huế; kỳ thi được diễn ra vào 05 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 trường chuyên Quốc học Huế : + Trên mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = 2mx + 3 (m khác 0). Tìm tất cả các giá trị của m để đường thẳng (d) cắt (P) tại hai điểm phân biệt A, B sao cho diện tích tam giác OAB bằng 6 cm2 (với O là gốc tọa độ, đơn vị đo trên các trục tọa độ là xentimét). + Cho đường tròn (O) và dây BC cố định (BC không phải là đường kính). Điểm A di động trên cung lớn BC sao cho tam giác ABC là tam giác nhọn. Gọi E là điểm đối xứng của B qua đường thẳng AC và F là điểm đối xứng của C qua đường thẳng AB. Gọi K là giao điểm của hai đường thẳng EC và FB, H là giao điểm của hai đường thẳng BE và CF. a) Chứng minh FAHB và ACKF là các tứ giác nội tiếp. b) Chứng minh KA là phân giác của góc BKC và ba điểm K, O, A thẳng hàng. c) Xác định vị trí của điểm A sao cho tứ giác BKCO có diện tích lớn nhất. + Tìm tất cả các giá trị nguyên dương của x và y thoả mãn x2 – 2^y.x – 4^21.9 = 0.
Đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2021 - 2022 sở GDĐT Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2021 – 2022 sở GD&ĐT Nghệ An; đề thi được dành cho các thí sinh thi vào trường THPT chuyên Phan Bội Châu (Nghệ An) và trường THPT chuyên – trường Đại học Vinh (Nghệ An); đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2021 – 2022 sở GD&ĐT Nghệ An : + Cho đường tròn (O) có dây cung BC cố định và không đi qua tâm O. Gọi A là điểm di động trên đường tròn (O) sao cho tam giác ABC nhọn và AB < AC. Gọi M là trung điểm của cạnh BC và H là trực tâm của tam giác ABC. Tia MH cắt đường tròn (O) tại K, đường thẳng AH cắt cạnh BC tại D và đường thẳng AO cắt đường tròn (O) tại E (E khác A). a) Chứng minh rằng tứ giác BHCE là hình bình hành và HA.HD = HK.HM. b) Tia KD cắt đường tròn (O) tại I (I khác K), đường thẳng đi qua I và vuông góc với đường thẳng BC cắt AM tại J. Chứng minh rằng các đường thẳng AK, BC và HJ cùng đi qua một điểm. c) Một đường tròn thay đổi luôn tiếp xúc với AK tại A và cắt các cạnh AB, AC lần lượt tại P, Q phân biệt. Gọi N là trung điểm của P Q. Chứng minh rằng AN luôn đi qua một điểm cố định. + Cho 676 số nguyên tố khác nhau. Chứng minh rằng có ít nhất hai số trong các số đã cho mà hiệu của chúng chia hết cho 2022. + Tìm số nguyên dương n để n − 23 n + 89 là bình phương một số hữu tỉ dương.