Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu Toán 9 chủ đề rút gọn biểu thức chứa căn thức bậc hai

Tài liệu gồm 22 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề rút gọn biểu thức chứa căn thức bậc hai trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. KIẾN THỨC CẦN NHỚ. Bước 1: Tìm điều kiện xác định của biểu thức. Bước 2: Phân tích tử số và mẫu số thành nhân tử rồi rút gọn nếu có thể. Bước 3: Quy đồng. Bước 4: Phá ngoặc bằng cách nhân khai trển các hạng tử với nhau hoặc khi triển hằng đẳng thức. Bước 5: Thu gọn bằng cách cộng, trừ các hạng tử đồng dạng. Bước 6: Phân tích tử thành nhân tử. Bước 7: Rút gọn lần cuối. CÁC DẠNG TOÁN. Dạng 1 : Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biểu thức khi biết giá trị của biến. Cách giải: Thực hiện theo hai bước: Bước 1: Để rút gọn biểu thức chứa căn bậc hai đã cho, ta sử dụng các phép biến đổi như đưa thừa số ra ngoài hoặc vào trong dấu căn, trục căn thức ở mẫu, quy đồng mẫu thức … một cách linh hoạt. Bước 2: Để tìm giá trị của biểu thức khi biết giá trị của biến ta rút gọn giá trị của biến (nếu cần) sau đó thay vào biểu thức đã được rút gọn ở trên và tính kết quả. Dạng 2 : Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biến khi biết giá trị của biểu thức. Cách giải: Để tìm giá trị của biến khi biết giá trị của biẻu thức tá ử dụng kết quả biểu thức rút gọn và giá trị đã biết của biểu thức trong đề bài để tìm ra kết quả. Dạng 3 : Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biến để biểu thức nhận giá trị nguyên. Cách giải: Ta xét hai trường hợp sau: Trường hợp 1: Tìm giá trị nguyên của biến để biểu thức nhậ giá trị nguyên. Trường hợp 2: Tìm giá trị thực của biến để biểu thức nhận giá trị nguyên. Dạng 4 : Rút gọn biểu thức chứa căn bậc hai và so sánh biểu thức với một số (hoặc một biểu thức khác). Cách giải: Để so sánh một biểu thức M với một số a, ta xét hiệu M – a và xét dấu của hiệu này, từ đó đi đến kết quả của phép so sánh. Dạng 5 : Rút gọn biểu thức chứa căn bậc hai và tìm GTNN (hoặc GTLN) của biểu thức. Cách giải: Chú ý rằng: – Biểu thức P có giá trị lớn nhất là a, ký hiệu P max a nếu P a với mọi giá trị của biến và tồn tại ít nhất một giá trị của biến để dấu “=” xảy ra. – Biểu thức P có giá trị nhỏ nhất là b, ký hiệu, P b min nếu P b với mọi giá trị của biến và tồn tại ít nhất một giá trị của biến để dấu “=” xảy ra. BÀI TẬP TỔNG HỢP. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP TỰ LUYỆN.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hệ số góc của đường thẳng y ax + b (a khác 0)
Tài liệu gồm 16 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề hệ số góc của đường thẳng y = ax + b (a khác 0), hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 2 bài số 5. A. TÓM TẮT LÍ THUYẾT B. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 : Tìm hệ số góc của đường thẳng. Phương pháp giải: Sử dụng các kiến thức liên quan đến vị trí tương đối giữa hai đừng thẳng và hệ số góc của đường thẳng. Dạng 2 : Xác định góc tạo bởi đường thẳng và tia Ox. Phương pháp giải: Để xác định góc giữa đường thẳng d và tia Ox, ta làm như sau: Cách 1. Vẽ d trên mặt phẳng tọa độ và sử dụng tỉ số lượng giác của tam giác vuông một cách phù hợp. Cách 2. Gọi α là góc tạo bởi tia Ox và d. Ta có: + Nếu α < 90° thì a > 0 và a = tanα. + Nếu α > 90° thì a < 0 và a = -tan(180° – α). Dạng 3 : Xác định đường thẳng biết hệ số góc. Phương pháp giải: Gọi phương trình đường thẳng cần tìm là d: y = ax + b. Ta cần xác định a và b dựa vào các kiến thức về góc và hệ số góc. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ
Chuyên đề phương trình bậc nhất hai ẩn
Tài liệu gồm 19 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề phương trình bậc nhất hai ẩn, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 3 bài số 1. A. KIẾN THỨC TRỌNG TÂM 1. Phương trình bậc nhất hai ẩn. 2. Tập nghiệm của phương trình bậc nhất hai ẩn. B. CÁC DẠNG BÀI TẬP MINH HỌA Dạng 1. Xác định nghiệm của phương trình bậc nhất hai ẩn. Dạng 2. Biện luận và vẽ đồ thị của hàm số bậc nhất. Dạng 3. Tìm nghiệm nguyên của phương trình bậc nhất hai ẩn. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. BÀI TẬP TỰ LUYỆN Xem thêm : Chuyên đề hệ phương trình bậc nhất hai ẩn
Chuyên đề hàm số bậc nhất
Tài liệu gồm 16 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề hàm số bậc nhất, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 2 bài số 2. A. TÓM TẮT LÝ THUYẾT 1. Hàm số bậc nhất. Là hàm số được cho bởi công thức y = ax + b trong đó a, b là hai số đã cho và a khác 0. 2. Các tính chất của hàm số bậc nhất. Hàm số bậc nhất xác định với mọi giá trị của x thuộc R. Hàm số bậc nhất: Đồng biến trên R khi a > 0; Nghịch biến trên R khi a < 0. B. CÁC DẠNG BÀI MINH HỌA Dạng 1: Tính giá trị của hàm số tại một điểm. + Việc tính toán theo kiểu này sẽ giúp ta xác định được toạ độ của nhiều điểm thuộc đồ thị hàm số một cách nhanh chóng. Ngoài ra, phương pháp sử dụng kết hợp máy tính cầm tay (sử dụng Slove) sẽ giúp cải thiện thời gian một cách hiệu quả. + Tính giá trị của hàm số y = f(x) khi cho giá trị của ẩn x0 là ta thay giá trị của x0 vào biểu thức y = f(x) để tìm được y = f(x0). Dạng 2: Vẽ đồ thị hàm bậc nhất. Theo các bước vẽ đã học. Dạng 3: Nhận dạng hàm số bậc nhất. Dựa vào định nghĩa hàm số bậc nhất. Dạng 4: Xét tính đông biến và nghịch biến của hàm số bậc nhất. Xét hàm số bậc nhất y = ax + b với a, b là hằng số: Khi a > 0, hàm số đồng biến trên R; khi a < 0, hàm số nghịch biến trên R. Dạng 5. Toán thực tế. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TỰ LUYỆN Dạng 1. Nhận biết về khái niệm hàm số. Dạng 2. Tính giá trị của hàm số, giá trị của biến số. Dạng 3. Tìm điều kiện xác định của hàm số. Dạng 4. Đồ thị hàm số. Xem thêm : + Chuyên đề hàm số bậc nhất và các bài toán liên quan + Tài liệu học tập Toán 9 chủ đề hàm số bậc nhất – Trần Quốc Nghĩa + 123 bài toán hàm số bậc nhất và đường thẳng – Lương Tuấn Đức
Chuyên đề căn bậc ba
Tài liệu gồm 19 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề căn bậc ba, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 1 bài số 9. A. KIẾN THỨC TRỌNG TÂM a) Định nghĩa căn bậc ba. b) Tính chất căn bậc ba. c) Các phép biến đổi căn bậc ba. Mở rộng: Căn bậc n: a) Định nghĩa căn bậc n. b) Tính chất của căn bậc n. B. CÁC DẠNG BÀI MINH HỌA I. Dạng toán cơ bản. II. Dạng bài nâng cao phát triển tư duy. C. TRẮC NGHIỆM RÈN PHẢN XẠ