Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 11 năm 2023 - 2024 cụm huyện Yên Dũng - Bắc Giang

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi văn hóa môn Toán 11 năm học 2023 – 2024 cụm trường THPT huyện Yên Dũng, tỉnh Bắc Giang; đề thi có đáp án và hướng dẫn chấm điểm mã đề 107 108 109 110 111. Trích dẫn Đề thi HSG Toán 11 năm 2023 – 2024 cụm huyện Yên Dũng – Bắc Giang : + Một anh sinh viên T nhập học đại học vào tháng năm . Bắt đầu từ tháng năm 2023, cứ vào ngày mồng một hàng tháng anh vay ngân hàng triệu đồng với lãi suất cố định /tháng. Lãi tháng trước được cộng vào số nợ để tiếp tục tính lãi cho tháng tiếp theo (lãi kép). Vào ngày mồng một hàng tháng kể từ tháng năm 2025 về sau anh không vay ngân hàng nữa và anh còn trả được cho ngân hàng triệu đồng do việc làm thêm. Hỏi ngay sau khi kết thúc ngày anh ra trường anh còn nợ ngân hàng bao nhiêu tiền (làm tròn đến hàng nghìn đồng)? + Lớp 11A có 50 học sinh, trong đó có 30 học sinh thích học môn Toán, 28 học sinh thích học môn Văn và 6 học sinh không thích học cả Toán và Văn. Chọn ngẫu nhiên một học sinh từ lớp đó. Xác suất để học sinh được chọn chỉ thích học môn Toán mà không thích học môn Văn là? + Một rạp hát có 25 hàng ghế, mỗi hàng có 20 ghế. Trong một buổi biểu diễn ca nhạc, rạp hát đó đã bán được vừa hết số vé tương ứng với số ghế trong rạp hát. Tính số tiền thu được từ việc bán vé, biết rằng giá mỗi vé ở hàng ghế thứ nhất là 500000 đồng và giá vé của hàng ghế sau ít hơn giá vé ở hàng ghế liền trước 15000 đồng.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 11 năm 2022 - 2023 cụm THPT huyện Ý Yên - Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán 11 năm học 2022 – 2023 cụm trường THPT huyện Ý Yên, tỉnh Nam Định; đề thi gồm hai phần: bài trắc nghiệm với 40 câu, thời gian làm bài 60 phút; bài tự luận với 05 câu, thời gian làm bài: 75 phút; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 11 năm 2022 – 2023 cụm THPT huyện Ý Yên – Nam Định : + Cho hình chóp S A BCD có đáy A BCD là hình chữ nhật với AB a BC a 3 và SA SB SC SD a 2. Gọi K là hình chiếu vuông góc của B trên AC và H là hình chiếu vuông góc của K trên SA. a) Tính sin của góc giữa SB và mặt phẳng (SAC) b) Tính độ dài đoạn HK theo a. c) Gọi I là giao điểm của hai đường thẳng HK SO. Mặt phẳng (a) di động, luôn đi qua I và cắt các đoạn thẳng SA SB SC SD lần lượt tại A’, B’, C’, D’. Tìm giá trị nhỏ nhất của P SA SB SC SD. + Một hộp chứa 4 viên bi màu đỏ (được đánh số 1, 2, 3, 4); 5 viên bi màu vàng (được đánh số 1, 2, 3, 4, 5) và 6 viên bi màu xanh (được đánh số 1, 2, 3, 4, 5, 6) (mỗi viên bi ghi một số). Lấy ngẫu nhiên bốn viên bi trong hộp. Tính xác suất lấy được bốn viên bi có đủ ba màu nhưng các số trên các viên bi lấy ra đều khác nhau. + Trong một cấp số nhân gồm các số hạng dương, hiệu số giữa số hạng thứ 5 và thứ 4 là 576 và hiệu số giữa số hạng thứ 2 và số hạng đầu là 9. Tổng 5 số hạng đầu tiên của cấp số nhân này bằng?
Đề HSG cấp trường Toán 11 vòng 2 năm 2022 - 2023 trường THPT Bình Sơn - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán 11 vòng 2 năm học 2022 – 2023 trường THPT Bình Sơn, tỉnh Vĩnh Phúc; đề thi hình thức 110% trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án. Trích dẫn Đề HSG cấp trường Toán 11 vòng 2 năm 2022 – 2023 trường THPT Bình Sơn – Vĩnh Phúc : + Một hộp chứa 12 viên bi kích thước như nhau, trong đó có 5 viên bi màu xanh được đánh số từ 1 đến 5; có 4 viên bi màu đỏ được đánh số từ 1 đến 4 và 3 viên bi màu vàng được đánh số từ 1 đến 3. Lấy ngẫu nhiên 2 viên bi từ hộp, tính xác suất để 2 viên bi được lấy vừa khác màu vừa khác số. Cho tập A gồm n điểm phân biệt trên mặt phẳng sao cho không có 3 điểm nào thẳng hàng. Tìm n sao cho số tam giác có 3 đỉnh lấy từ 3 điểm thuộc A gấp đôi số đoạn thẳng được nối từ 2 điểm thuộc A. + Trong mặt phẳng với trục toạ độ Oxy cho hình thang cân ABCD AB CD. Gọi H I lần lượt là hình chiếu vuông góc của B trên các đường thẳng AC CD. Giả sử M N lần lượt là trung điểm của AD HI. Phương trình đường thẳng AB có dạng mx ny 7 0 biết M N 1 2 3 4 và đỉnh B nằm trên đường thẳng x y 9 0 2 cos 5 ABM. Khi đó m n có giá trị thuộc khoảng nào sau đây? + Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua vào một chiếc là 27 (triệu đồng) và bán ra với giá là 31triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất. A. 29,5triệu đồng. B. 30 triệu đồng. C. 30,5 triệu đồng. D. 29 triệu đồng.
Đề học sinh giỏi Toán 11 cấp tỉnh năm 2022 - 2023 sở GDĐT Hà Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán 11 THPT cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam; đề thi hình thức tự luận với 05 bài toán, thời gian làm bài 180 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi Toán 11 cấp tỉnh năm 2022 – 2023 sở GD&ĐT Hà Nam : + Cho đa giác đều có 2n đỉnh (n ≥ 2 và n thuộc N). Biết rằng, từ 2n đỉnh của đa giác đều đã cho ta lập được 2520 tam giác vuông. Tìm số cạnh của đa giác đều đã cho. + Ba bạn A, B, C mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1;22]. Tính xác suất để ba số viết ra có tổng chia hết cho 3. + Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi M là trung điểm của BC, điểm N thay đổi thuộc cạnh AC. Biết mặt phẳng (A’BN) luôn cắt AC’ và AM lần lượt tại hai điểm P và Q. Xác định vị trí của N để diện tích của tam giác APQ bằng 2/9 lần diện tích của tam giác AMC’.
Đề học sinh giỏi Toán 11 năm 2022 - 2023 trường THPT Phùng Khắc Khoan - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi văn hóa cấp trường môn Toán 11 năm học 2022 – 2023 trường THPT Phùng Khắc Khoan, huyện Thạch Thất, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn Đề học sinh giỏi Toán 11 năm 2022 – 2023 trường THPT Phùng Khắc Khoan – Hà Nội : + Tìm phương trình parabol P 2 y ax bx c biết rằng P đi qua ba điểm A B C như hình vẽ. + Trong mọi tam giác ABC, gọi a, b, c lần lượt là độ dài các cạnh BC, AC, AB và S là diện tích tam giác ABC. Chứng minh rằng: 2 2 2 cot cot cot 4 a b c A B C S. + Cho phương trình 2 2 4 4 5 4 2 1 x x x x m. Tìm tất cả các giá trị của tham số m để phương trình có bốn nghiệm thực phân biệt.