Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 9 môn Toán năm 2022 2023 sở GD ĐT TP Hồ Chí Minh

Nội dung Đề thi học sinh giỏi lớp 9 môn Toán năm 2022 2023 sở GD ĐT TP Hồ Chí Minh Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 năm 2022 - 2023 TP.HCM Đề thi học sinh giỏi Toán lớp 9 năm 2022 - 2023 TP.HCM Sytu xin gửi đến các thầy cô giáo và các em học sinh lớp 9 bộ đề thi chọn học sinh giỏi cấp thành phố môn Toán năm học 2022 - 2023 của Sở Giáo dục và Đào tạo TP.Hồ Chí Minh. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm; sẽ diễn ra vào thứ Ba ngày 14 tháng 03 năm 2023. Trích đề thi học sinh giỏi Toán lớp 9 năm 2022 - 2023 TP.HCM: Cho phương trình \(x^3 + mx^2 - x + m - m^2 = 0\) với tham số m. Chứng minh rằng phương trình luôn có một nghiệm \(x = 1 - m\) với mọi giá trị của tham số m. Tìm tất cả các giá trị của tham số m để phương trình có ba nghiệm phân biệt \(x_1\), \(x_2\), \(x_3\) sao cho \(x_1^2 + x_2^2 + x_3^2 = 3\). Cho tam giác ABC không cân nội tiếp đường tròn (O) có đường cao AD; AM là đường kính của đường tròn (O); K là hình chiếu của B lên AM. Chứng minh rằng DK vuông góc AC. Chứng minh rằng AEFC là tứ giác nội tiếp. Chứng minh rằng HE = 2IO với H là trực tâm của tam giác AEC và I là tâm đường tròn ngoại tiếp tứ giác AEFC. Tìm tất cả các số tự nhiên x, y và số nguyên tố p sao cho \(p^x = y^4 + 64\). Đây là những câu hỏi thú vị và chất lượng trong đề thi học sinh giỏi Toán lớp 9 năm 2022 - 2023 TP.HCM. Chúc các em học sinh ôn tập và thi đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Phú Xuyên - Hà Nội (Vòng 1)
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Phú Xuyên, thành phố Hà Nội (Vòng 1). Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Phú Xuyên – Hà Nội (Vòng 1) : + Giải bất phương trình: x2 – 9x + 14 < 0. Chứng minh rằng với mọi số nguyên n thì n3 + 3n2 + 2018n chia hết cho 6. + Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. 1) Tứ giác BEDF là hình gì, vì sao? 2) Gọi CH và CK lần lượt là đường cao của tam giác ACB và tam giác ACD. Chứng minh rằng:a) CHK đồng dạng BCA. b) AB.AH + AD.AK = AC². + Cho tam giác ABC nhọn, các đường cao AK, BD, CE cắt nhau tại H. Giả sử HK = AK/3. Chứng minh rằng tanB.tanC = 3.
Đề học sinh giỏi Toán THCS năm 2023 - 2024 phòng GDĐT Đông Hà - Quảng Trị
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi văn hóa cấp THCS môn Toán năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Đông Hà, tỉnh Quảng Trị. Trích dẫn Đề học sinh giỏi Toán THCS năm 2023 – 2024 phòng GD&ĐT Đông Hà – Quảng Trị : + Cho hình bình hành ABCD. Gọi E, F lần lượt là hình chiếu của B, D lên đường chéo AC và G, H lần lượt là hình chiếu của A, C lên đường chéo BD. Biết rằng 4 điểm E, F, G, H tạo thành một tứ giác. Chứng minh tứ giác đó cũng là một hình bình hành. + Cho tam giác ABC vuông tại C có CB = 3CA. Gọi D, E là các điểm trên cạnh BC sao cho CD = DE = EB. Chứng minh rằng ADC + AEC + ABC = 90°. + Các số nguyên dương được chia vào các tập hợp S1, S2, S3, S4 … như sau: S = {1}, S2 = {2;3}, S3 = {4;5;6}, S4 = {7;8;9;10} và cứ thế tiếp tục. Hỏi phần tử nhỏ nhất và phần tử lớn nhất của tập S2023 là bao nhiêu?
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Triệu Phong - Quảng Trị
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi văn hóa môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Triệu Phong, tỉnh Quảng Trị. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Triệu Phong – Quảng Trị : + Cho hình bình hành ABCD. Gọi E là một điểm bất kỳ trên đường chéo AC. Đường thẳng qua E và song song với AB cắt BC tại F. Gọi G là điểm đối xứng với C qua F, chứng minh rằng EG song song với đường chéo BD. + Cho tam giác ABC vuông cân tại A có AM là đường trung tuyến (M thuộc BC). Đường thẳng qua B và vuông góc với phân giác trong của góc MAC cắt AC, AM lần lượt tại D, E. Chứng minh CD = 2ME. + Một hình tròn được chia thành 6 hình quạt tròn. Tom viết lần lượt lên 6 hình quạt đó các số 2, 0, 2, 3, 0, 9 theo chiều kim đồng hồ, mỗi hình quạt được viết 1 số. Jerry có thể cộng thêm 1 đơn vị cho mỗi số ở 2 hình quạt tròn kề nhau bất kỳ. Hãy xác định xem Jerry có thể cộng thêm như vậy để được các số ở 6 hình quạt tròn bằng nhau hay không?
Đề học sinh giỏi Toán 9 năm 2023 - 2024 trường THCS Nguyễn Trường Tộ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng học sinh giỏi môn Toán 9 năm học 2023 – 2024 trường THCS Nguyễn Trường Tộ, quận Đống Đa, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 16 tháng 09 năm 2023. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 trường THCS Nguyễn Trường Tộ – Hà Nội : + Cho ba số nguyên dương m, n, p thỏa mãn: (m + n!)(n + m!) = 5^p. Chứng minh rằng mn là số chính phương. + Cho tam giác ABC nhọn, không cân (AB < AC), các đường cao AD, BE, CF cắt nhau tại trực tâm H. Gọi M, I lần lượt là trung điểm của BC, AH. Đường thẳng qua I vuông góc với AM, cắt EF tại S. 1) Chứng minh IE vuông góc với ME. 2) Chứng minh SA song song với BC. 3) Gọi P, Q lần lượt là giao điểm của SI với BE, CF. Chứng minh I là trung điểm của PQ. + Cho 2023 điểm phân biệt được phủ lên bởi một tam giác vuông cân có cạnh huyền bằng 24. Chứng minh luôn tồn tại một hình tròn có đường kính bằng 1, phủ lên ít nhất 7 điểm đã cho.