Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG lớp 10 môn Toán cấp trường năm 2017 2018 trường Lý Thái Tổ Bắc Ninh

Nội dung Đề thi chọn HSG lớp 10 môn Toán cấp trường năm 2017 2018 trường Lý Thái Tổ Bắc Ninh Bản PDF - Nội dung bài viết Đề thi chọn HSG Toán lớp 10 trường Lý Thái Tổ Bắc Ninh Đề thi chọn HSG Toán lớp 10 trường Lý Thái Tổ Bắc Ninh Đề thi chọn HSG Toán lớp 10 cấp trường năm 2017 - 2018 trường Lý Thái Tổ - Bắc Ninh được tổ chức vào ngày 14 tháng 04 năm 2018. Đề thi bao gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút. Mỗi bài toán sẽ giúp học sinh thể hiện kiến thức và kỹ năng giải toán của mình từ các chủ đề khác nhau. Trong bài toán đầu tiên, học sinh sẽ cần tìm tọa độ các đỉnh của hình vuông ABCD khi biết các thông tin như trung điểm cạnh AB, trung điểm đoạn CI và điều kiện của đỉnh D. Hướng giải sẽ là qua việc tìm tọa độ các đỉnh để giải phương trình và điều kiện đề bài cho ra kết quả cuối cùng. Bài toán thứ hai đề cập đến Parabol và đường thẳng cắt nhau tạo thành hai điểm phân biệt A và B theo điều kiện AB = 10. Học sinh cần phải giải phương trình giữa Parabol và đường thẳng để tìm ra giá trị của m để thỏa mãn điều kiện đề bài. Trong bài toán cuối cùng, học sinh sẽ cần tính diện tích tam giác ABC khi biết các thông tin về tam giác, góc, hai đường trung tuyến vuông góc và độ dài một cạnh. Hướng giải sẽ là sử dụng các công thức trong hình học để tính toán diện tích tam giác theo yêu cầu đề bài. Với nhiều bài toán đa dạng về nội dung và đòi hỏi khả năng suy luận logic, đề thi chọn HSG Toán lớp 10 trường Lý Thái Tổ Bắc Ninh sẽ giúp học sinh rèn luyện kỹ năng giải toán, tư duy logic và khám phá sự sáng tạo trong học tập.

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Diễn Châu 2 - Nghệ An
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Diễn Châu 2 – Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Diễn Châu 2 – Nghệ An : + Cho tam giác ABC có trọng tâm G. Gọi E, F là các điểm thỏa mãn AE = 2AB, 5AF = 2AC. Chứng minh ba điểm G, E, F thẳng hàng. + Cho tam giác ABC có ba cạnh a, b, c (với b > c), biết nửa chu vi bằng 10, góc CAB = 60 độ. Bán kính đường tròn nội tiếp tam giác đó bằng 3. Tính độ dài đường trung tuyến ma. + Trong mặt phẳng (Oxy), cho tam giác ABC có A(3;4), trực tâm H(1;3) và tâm đường tròn ngoại tiếp tam giác ABC là I(2;0). Viết phương trình các đường thẳng AH và BC.
Đề thi HSG Toán 10 lần 2 năm 2020 - 2021 trường THPT Đồng Đậu - Vĩnh Phúc
Đề thi HSG Toán 10 lần 2 năm học 2020 – 2021 trường THPT Đồng Đậu – Vĩnh Phúc gồm 01 trang với 10 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 10 lần 2 năm 2020 – 2021 trường THPT Đồng Đậu – Vĩnh Phúc : + Cho hình chữ nhật ABCD có AB = 2AD, BC = a. Tính giá trị nhỏ nhất của độ dài vectơ u = MA + 2MB + 3MC, trong đó M là điểm thay đổi trên đường thẳng BC. + Cho tam giác ABC vuông tại A, G là trọng tâm tam giác ABC. Tính độ dài cạnh AB biết cạnh AC = a và góc giữa hai véc tơ GB và GC là nhỏ nhất. + Cho tam giác ABC cân tại A, nội tiếp đường tròn tâm O. Gọi D là trung điểm của AB, E là trọng tâm tam giác ADC. Chứng minh rằng OE vuông góc CD.
Đề thi học sinh giỏi cấp trường Toán 10 năm 2020 - 2021 trường chuyên Bắc Ninh
Đề thi học sinh giỏi cấp trường Toán 10 năm học 2020 – 2021 trường THPT chuyên Bắc Ninh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi học sinh giỏi cấp trường Toán 10 năm 2020 – 2021 trường chuyên Bắc Ninh : + Cho các số nguyên dương được viết vào 441 ô của bảng vuông 21×21.Mỗi hàng và mỗi cột có nhiều nhất 6 giá trị khác nhau. Chứng minh rằng tồn tại một số nguyên có mặt ở ít nhất 3 cột và ít nhất 3 hàng. + Cho tam giác ABC với O, I theo thứ tự là tâm đường tròn ngoại tiếp,nội tiếp tam giác.Chứng minh rằng AIOd ≤ 90◦ khi và chỉ khi AB + AC ≥ 2BC. + Cho a, b, c là các số thực dương thỏa mãn ab + bc + ca = 3abc. Tìm giá trị nhỏ nhất của biểu thức P.