Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối kỳ 2 Toán 10 năm 2022 - 2023 trường THPT Buôn Đôn - Đắk Lắk

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 2 môn Toán 10 năm học 2022 – 2023 trường THPT Buôn Đôn, tỉnh Đắk Lắk; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề cuối kỳ 2 Toán 10 năm 2022 – 2023 trường THPT Buôn Đôn – Đắk Lắk : + Hãy chọn khẳng định sai trong các khẳng định sau: A. Phép thử ngẫu nhiên là một hoạt động mà ta không thể biết trước được kết quả của nó. B. Biến cố không thể là biến cố luôn luôn xảy ra. C. Biến cố là tập con của không gian mẫu. D. Không gian mẫu là tập hợp tất cả các kết quả có thể xảy ra khi thực hiện phép thử. + Định nghĩa nào sau đây là định nghĩa đường Hypebol: A. Cho 1 2 F F cố định với FF c c 1 2 2 0. Hypebol (H) là tập hợp điểm M sao cho 1 2 MF MF a 2 với a là một số không đổi và 0 a c. B. Cả ba định nghĩa trên đều không đúng định nghĩa của Hypebol. C. Cho 1 2 F F cố định với FF c c 1 2 2 0 và một độ dài 2a không đổi (a c). Hypebol (H) là tập hợp các điểm M sao cho 1 2 M H MF MF a 2. D. Cho điểm F cố định và một đường thẳng ∆ cố định không đi qua F. Hypebol (H) là tập hợp các điểm M sao cho khoảng cách từ M đến F bằng khoảng cách từ M đến ∆. + Một công ty du lịch báo giá tiền tham quan của một nhóm khách du lịch như sau: 50 khách đầu tiên có giá là 300000 đồng một người. Nếu có trên 50 người thì cứ thêm một người thì giá vé sẽ giảm 5000 đồng / người cho toàn bộ hành khách. Gọi x là số lượng khách vượt quá 50 người của nhóm. Biết chi phí thực sự của chuyến du lịch là 15080000 đồng. Hãy xác định số nguyên lớn nhất của x để công ty không bị lỗ.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 2 Toán 10 năm học 2019 - 2020 sở GDĐT Vĩnh Phúc
Ngày … tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng học kỳ 2 (HK2) môn Toán lớp 10 năm học 2019 – 2020. Đề thi học kỳ 2 Toán 10 năm học 2019 – 2020 sở GD&ĐT Vĩnh Phúc mã đề 195 gồm 02 trang với 12 câu trắc nghiệm (3 điểm) và 05 câu tự luận (07 điểm), thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 2 Toán 10 năm học 2019 – 2020 sở GD&ĐT Vĩnh Phúc : + Trong mặt phẳng toạ độ Oxy, cho các điểm A(4;-3), B(4;1) và đường thẳng (d): x + 6y = 0. Viết phương trình đường tròn (C) đi qua A và B, biết các tiếp tuyến của (C) tại A và B cắt nhau tại một điểm thuộc (d). [ads] + Tìm tất cả các giá trị của tham số m để bất phương trình sau đúng với mọi số thực x: x^2 – 2(m – 1)x + m + 5 ≥ 0. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1;2), B(3;1) và C(5;4). Phương trình đường thẳng chứa đường cao kẻ từ A của tam giác ABC là?
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Trần Khai Nguyên - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Trần Khai Nguyên, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Trần Khai Nguyên – TP HCM : + Một người thợ mộc đóng một cái bàn với mặt bàn là hình tam giác có chu vi bằng 480cm và độ dài cạnh lớn nhất là 220cm. Để chia mặt bàn thành 2 tam giác nhỏ có diện tích bằng nhau, người thợ mộc đã kẻ đường trung tuyến ứng với cạnh lớn nhất và đo được độ dài đường trung tuyến này là 70cm. Hãy tính diện tích mặt bàn và cho biết mặt bàn có dạng tam giác vuông, tam giác nhọn hay tam giác tù? Vì sao? + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(1;2), B(-2;3) và C(2;1). a) Viết phương trình cạnh AB và đường trung tuyến BM của tam giác ABC. b) Viết phương trình đường cao CH và tìm tọa độ điểm H với H là chân đường cao kẻ từ C của tam giác ABC? + Định m để bất phương trình x2 – 2mx + 3m – 2 > 0 nghiệm đúng với mọi x.
Đề thi HK2 Toán 10 năm 2019 - 2020 trường THPT Nguyễn Thị Minh Khai - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi HK2 Toán 10 năm học 2019 – 2020 trường THPT Nguyễn Thị Minh Khai, thành phố Hồ Chí Minh; đề được biên soạn theo dạng đề thi tự luận với 05 bài toán, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HK2 Toán 10 năm 2019 – 2020 trường THPT Nguyễn Thị Minh Khai – TP HCM : + Trong mặt phẳng Oxy: a) Viết phương trình đường thẳng (Δ) qua điểm I(2; 3) và song song với đường thẳng (d): x + y – 1 = 0. b) Cho A(3;1), B(3;-1) và đường tròn (C): x2 + y2 = 1. Tìm tọa độ điểm M thuộc (C) sao cho góc (MA;MB) lớn nhất. + Trong mặt phẳng Oxy, viết phương trình đường tròn đi qua ba điểm A(1;1), B(-1;3), C(-1;1). + Trong mặt phẳng Oxy, cho elip (E): x^2/25 + y^2/9 = 1. Tìm độ dài hai trục và tọa độ các tiêu điểm.
Đề thi HK2 Toán 10 năm 2019 - 2020 trường THPT Nam Duyên Hà - Thái Bình
Thứ Hai ngày 22 tháng 06 năm 2020, trường THPT Nam Duyên Hà, tỉnh Thái Bình tổ chức kỳ thi kết thúc học kỳ 2 môn Toán lớp 10 năm học 2019 – 2020. Đề thi HK2 Toán 10 năm 2019 – 2020 trường THPT Nam Duyên Hà – Thái Bình gồm có 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề thi HK2 Toán 10 năm 2019 – 2020 trường THPT Nam Duyên Hà – Thái Bình : + Góc a thỏa mãn -90 độ < a < 0 độ có điểm biểu diễn nằm trong cung nào trong hình sau? A. cung nhỏ AB. B. cung nhỏ A’B’. C. cung nhỏ BA’. D. cung nhỏ B’A. + Đường thẳng (∆’) thỏa mãn (∆’) // (∆): 3x + 4y = 7, khoảng cách giữa (∆) và (∆’) bằng 2 và (∆’) gần gốc tọa độ nhất có phương trình là? + Biểu thức nào trong các biểu thức sau có bảng xét dấu như hình vẽ dưới đây?