Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào 10 chuyên môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Cà Mau

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm học 2021 – 2022 sở GD&ĐT Cà Mau; kỳ thi được diễn ra vào ngày 11 tháng 06 năm 2021. Trích dẫn đề thi vào 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Cà Mau : + Tất cả học sinh lớp 9 của Trường trung học cơ sở Tân Tiến tham gia xếp hàng để đồng diễn thể dục; mỗi hàng đươc xếp không quá 25 học sinh. Nếu xếp mỗi hàng 16 học sinh thì còn thừa một học sinh; nếu bớt đi một hàng thì có thể chia đều tất cả các học sinh vào các hàng còn lại sao cho số học sinh ở mỗi hàng là bằng nhau. Hỏi Trường trung học cơ sở Tân Tiến có bao nhiêu ho5c sinh lớp 9? + Ngày 31/5/2021, Ủy ban Bầu cử của tỉnh A đã ban hành Nghị quyết công bố 51 đại biểu là nam và nữ trúng cử Hội đồng nhân dân tỉnh khóa X, nhiệm kỳ 2021-2026. Người ta thống kê được rằng: tuổi trung bình của các đại biểu nam trúng cử là 1612 33 tuổi; tuổi trung bình của các đại biểu nữ trúng cử là 413 9 tuổi và tuổi trung bình của 51 đại biểu trúng cử là 2438 51 tuổi. Tính số đại biểu trúng cử là nam; số đại biểu trúng cử là nữ của tỉnh A. + Cho tam giác ABC có ba góc nhọn. Các đường cao AM, BN, CP cắt nhau tại H. Gọi I là điểm đối xứng của H qua BC. a) Chứng minh tứ giác ABIC nội tiếp được đường tròn (O). b) Gọi K là trung điểm của AB, chứng minh NK là tiếp tuyến của đường tròn ngoại tiếp của tam giác NHC. c) Biết BN cắt đường tròn (O) tại điểm thứ hai là E và CP cắt đường tròn (O) tại điểm thứ hai là F. Tính giá trị biểu thức AI BE CF G AM BN CP.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Lào Cai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Lào Cai; kỳ thi được diễn ra vào 03/06/2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Lào Cai : + Một cửa hàng nhập 10 sản phẩm gồm hai loại A và B về bán. Biết mỗi sản phẩm loại A nặng 9kg, mỗi sản phẩm loại B nặng 10kg và tổng khối lượng của tất cả các sản phẩm là 95kg. Hỏi cửa hàng đã nhập bao nhiêu sản phẩm mỗi loại? + Cho tam giác ABC vuông ở A, có đường cao AH. Biết góc ABC = 60°, độ dài BC = 40cm. a) Tính độ dài cạnh AB. b) Gọi điểm K thuộc đoạn thẳng AC sao cho HK vuông góc với AC. Tính độ dài đoạn HK. + Cho tam giác ABC có ba góc nhọn (BA < BC) và nội tiếp đường tròn tâm O. Hai tiếp tuyến của đường tròn (O) tại A và C cắt nhau tại I. Tia BI cắt đường tròn (O) tại điểm thứ hai là D. a) Chứng minh rằng tứ giác OAIC nội tiếp. b) Chứng minh IC2 = IB.ID. c) Gọi M là trung điểm của BD. Tia CM cắt đường tròn (O) tại điểm thứ hai là E. Chứng minh rằng: MO vuông góc AE.
Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Thừa Thiên Huế
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế; kỳ thi được diễn ra vào 03/06/2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Thừa Thiên Huế : + Một người đi xe đạp với vận tốc không đổi từ A đến B cách nhau 36 km. Trên cùng tuyến đường đó, khi đi từ B trở về A, người này đi với vận tốc lớn hơn 3 km/h so với vận tốc khi đi từ A đến B vì vậy thời gian về ít hơn thời gian đi là 36 phút. Tính vận tốc của người đi xe đạp khi đi từ A đến B. + Cho tam giác ABC có ba góc nhọn, AB > AC và nội tiếp đường tròn (O). Tiếp tuyến của đường tròn (O) tại A cắt đường thẳng BC tại D. Gọi E là hình chiếu vuông góc của O trên đường thẳng BC. a) Chứng minh AOED là tứ giác nội tiếp. b) Đường tròn ngoại tiếp tứ giác AOED cắt đường tròn (O) tại điểm thứ hai là F (F không trùng với A). Chứng minh DF là tiếp tuyến của đường tròn (O) và AB FB AC FC. c) Các tiếp tuyến của đường tròn (O) tại B và C cắt nhau tại G. Chứng minh ba điểm A, F, G thẳng hàng. + Cho tam giác OBC vuông tại O. Nếu quay tam giác OBC một vòng quanh cạnh OB cố định thì được một hình nón có thể tích bằng 800pi cm3. Nếu quay tam giác OBC một vòng quanh cạnh OC cố định thì được một hình nón có thể tích bằng 1920pi cm3. Tính OB và OC.
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2023 - 2024 sở GDĐT Trà Vinh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Trà Vinh; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 chuyên môn Toán năm 2023 – 2024 sở GD&ĐT Trà Vinh : + Cho phương trình x2 − 2(m − 1)x + 2m − 3 = 0 (x là biến và m là tham số). a) Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi giá trị của tham số m. b) Tìm m để phương trình có hai nghiệm x1, x2 thỏa (x1 − 2)(2×1 + 3×2 − 3x1x2 + 2m) = 0. + Cho tam giác ABC có ba góc nhọn (với AB < AC) nội tiếp đường tròn (O). Các đường cao BD và CE cắt nhau tại H. Các đường thẳng DE và CB cắt nhau tại M, AM cắt (O) tại N (N khác A). Chứng minh: a) Tứ giác BCDE nội tiếp và MB.MC = MD.ME. b) MDN = MAE. c) HN vuông góc AM. + Cho các số thực a, b thỏa mãn a2 + b2 = 4. Tìm giá trị nhỏ nhất của biểu thức T = 4 + 4ab – a4 – b4.
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2023 - 2024 sở GDĐT Quảng Trị
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Trị; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 chuyên môn Toán năm 2023 – 2024 sở GD&ĐT Quảng Trị : + Chứng minh n2 + 3n + 1 là số lẻ với mọi số tự nhiên n. Tìm tất cả các số nguyên dương a, b sao cho 4a2 + b + 4; 4b2 + a + 4 đều là số chính phương. + Cho tam giác ABC nhọn, AB < AC. Kẻ các đường cao AD, BE, CF cắt nhau tại H. Từ A kẻ hai tiếp tuyến AP, AQ đến đường tròn tâm O, đường kính BC (P, Q là các tiếp điểm và P, F nằm cùng phía so với đường thẳng AD). 1. Chứng minh AP2 = AB.AF và 5 điểm A, P, D, O, Q nằm trên một đường tròn. 2. Chứng minh H, P, Q thẳng hàng. 3. Chứng minh PF, QE, AD đồng quy. + Trên mặt phẳng có 5 điểm tùy ý, trong đó không có ba điểm nào thẳng hàng. Chứng minh tồn tại 4 điểm là 4 đỉnh của một tứ giác lồi.