Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 2 Toán 12 năm 2019 - 2020 trường THPT chuyên Quốc học Huế

Ngày … tháng 06 năm 2020, trường THPT chuyên Quốc học Huế, tỉnh Thừa Thiên Huế tổ chức kỳ thi kiểm tra chất lượng học kỳ 2 (HK2) môn Toán lớp 12 năm học 2019 – 2020. Đề thi học kỳ 2 Toán 12 năm 2019 – 2020 trường THPT chuyên Quốc học Huế gồm 04 trang với 32 câu trắc nghiệm và 02 câu tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 2 Toán 12 năm 2019 – 2020 trường THPT chuyên Quốc học Huế : + Trong không gian với hệ tọa độ Oxyz, cho tam giác OBC đều cạnh a và nằm trong mặt phẳng (Oxy), với B ∈ Ox . Dựng OO1, BB1, CC1 cùng vuông góc với mặt phẳng (OBC) sao cho OO1 = 2a, BB1 = a và diện tích tam giác O1B1C1 đạt giá trị nhỏ nhất. Giả sử giá trị nhỏ nhất đó là ma2. Khi đó, giá trị của m thuộc khoảng nào sau đây, biết tọa độ các điểm O1, B1, C1 đều không âm? [ads] + Mệnh đề nào sau đây đúng? A. Cho số phức z bất kì, khi đó số phức z – z là số thực. B. Số 0 vừa là số thực vừa là số thuần ảo. C. Cho số phức z bất kì, khi đó z^2 = |z|^2. D. Cho số phức z bất kì, khi đó số phức z + z là số thuần ảo. + Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆: (x – 1)/1 = (y – 1)/2 = (z + 1)/-1 và mặt cầu (S): x^2 + y^2 + z^2 – 2x + 4y – 2z – 3 = 0. Viết phương trình mặt phẳng (α) chứa đường thẳng ∆ và cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính lớn nhất.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường chuyên Lê Hồng Phong - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường THPT Cần Thạnh - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT Cần Thạnh, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường THPT Cần Thạnh – TP HCM : + Trong không gian Oxyz, cho mặt phẳng x y z 3 4 0. Điểm nào dưới đây không thuộc mặt phẳng? + Cho số phức z thỏa mãn. Tìm điểm biểu diễn của số phức w trên mặt phẳng tọa độ. + Gọi (H) là hình phẳng giới hạn bởi các đường: 3 2 y x x 3 và y 0. Tính thể tích V của vật thể tròn xoay tạo thành khi quay (H) xung quanh trục Ox?
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường THPT Bùi Thị Xuân - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT Bùi Thị Xuân, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường THPT Bùi Thị Xuân – TP HCM : + Cho elip E có độ dài trục lớn 1 2 A A 10, trục nhỏ 1 2 B B 8 và hai tiêu điểm F1, F2. Diện tích S của hình phẳng giới hạn bởi E và hai đường thẳng đi qua các tiêu điểm, vuông góc với trục lớn (tham khảo hình vẽ) nằm trong khoảng nào dưới đây? + Tính thể tích V của vật thể được giới hạn bởi hai mặt phẳng x a và x b biết rằng khi cắt vật thể bởi mặt phẳng tùy ý vuông góc với trục Ox tại điểm có hoành độ x a x b thì được thiết diện có diện tích S x. Khẳng định nào sau đây đúng? + Cho các số phức z, w thỏa mãn z 1 và w i z. Biết rằng tập hợp các điểm biểu diễn số phức w trong mặt phẳng Oxy là một đường tròn. Tính bán kính r của đường tròn đó.
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường THPT Bình Tân - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT Bình Tân, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường THPT Bình Tân – TP HCM : + Cho hình phẳng (H) được giới hạn bởi parabol, trục Ox và các đường thẳng x x 1 3. Diện tích của hình phẳng (H) là? + Trong không gian Oxyz, phương trình tham số của đường thẳng đi qua điểm M(3;-5;0) và song song với trục Oy là? + Trong không gian Oxyz, cho ba điểm A(1;-1;1), B(0;1;2), C(1;0;3). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.