Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPT Quốc gia năm 2019 môn Toán sở GDĐT Kiên Giang

Thứ Bảy ngày 25 tháng 05 năm 2019, sở Giáo dục và Đào tạo tỉnh Kiên Giang tổ chức kỳ thi thử THPT Quốc gia môn Toán năm học 2018 – 2019 dành cho học sinh khối 12 đang học tập tại các trường THPT, cở sở GDTX trên địa bàn tỉnh Kiên Giang. Đề thi thử THPT Quốc gia năm 2019 môn Toán sở GD&ĐT Kiên Giang có mã đề 004, đề gồm 6 trang được biên soạn theo hình thức trắc nghiệm khách quan, đề gồm 50 câu hỏi và bài toán, thời gian học sinh làm bài là 90 phút, đề thi có đáp án mã đề 001, 002, 003, 004. Kỳ thi nhằm giúp các em học sinh lớp 12 nắm vững cấu trúc đề, củng cố và rèn luyện kiến thức môn Toán để chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm học 2018 – 2019 do Bộ GD&ĐT tổ chức. Trích dẫn đề thi thử THPT Quốc gia năm 2019 môn Toán sở GD&ĐT Kiên Giang : + Trong các mệnh đề sau, mệnh đề nào sai? A. Phép vị tự biến đoạn thẳng thành đoạn thẳng bằng nó. B. Phép vị tự biến đường thẳng thành đường thẳng. C. Phép vị tự biến đường tròn thành đường tròn. D. Phép vị tự biến tia thành tia. [ads] + Cho một hình cầu nối tiếp hình nón tròn xoay có góc ở đỉnh là 2a, bán kính đáy là R và chiều cao là h. Một hình trụ ngoại tiếp hình cầu đó có đáy dưới nằm trong mặt phẳng đáy của hình nón. Gọi V1, V2 lần lượt là thể tích của hình nón và của hình trụ, biết rằng V1 khác V2. Gọi M là giá trị lớn nhất của tỉ số V2/V1. Giá trị của biểu thức P = 48M +25 thuộc khoảng nào dưới đây? (tham khảo hình vẽ). + Trên mỗi ô vuông của một bảng 4×4 ô vuông, người ta điền một trong hai số 6 hoặc -6 sao cho tổng các số trong mỗi hàng và trong mỗi cột đều bằng 0. Hỏi có bao nhiêu cách điền như thế? (tham khảo hình vẽ ví dụ cho một trường hợp điền số thỏa yêu cầu).

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 12 lần 2 năm 2020 - 2021 trường THPT Thăng Long - Hà Nội
Nhằm chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông năm 2021, ngày 19 tháng 05 năm 2021, trường THPT Thăng Long, quận Hai Bà Trưng, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 năm học 2020 – 2021 lần thứ hai; kỳ thi được tổ chức theo hình thức thi trực tuyến (online). Đề khảo sát Toán 12 lần 2 năm 2020 – 2021 trường THPT Thăng Long – Hà Nội được biên soạn bám sát cấu trúc đề tham khảo TN THPT 2021 môn Toán của Bộ Giáo dục và Đào tạo; đề thi có đáp án và lời giải chi tiết VD – VDC mã đề 184, 348, 552, 774. Trích dẫn đề khảo sát Toán 12 lần 2 năm 2020 – 2021 trường THPT Thăng Long – Hà Nội : + Trong không gian hệ trục tọa độ Oxyz, cho mặt cầu 2 2 2 64 1 2 2 9 S x y z. Trên tia Ox Oy Oz lần lượt lấy các điểm A B C thỏa mãn 1 2 2 9 OA OB OC. Biết mặt phẳng ABC tiếp xúc với mặt cầu S. Thể tích khối chóp OABC là? + Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A và B. Gọi là đường thẳng đi qua điểm M sao cho tổng khoảng cách từ hai điểm A và B đến đường thẳng là lớn nhất. Đường thẳng có một vectơ chỉ phương là u a b. Khi đó 2a b bằng? + Trong mặt phẳng tọa độ, các điểm A và B trong hình vẽ dưới đây lần lượt là điểm biểu diễn của các số phức 1 z và 2 z. Modul của số phức 1 2 z z bằng?
Đề khảo sát chất lượng Toán 12 năm 2021 sở GDĐT thành phố Cần Thơ
Thứ Tư ngày 19 tháng 05 năm 2021, sở Giáo dục và Đào tạo thành phố Cần Thơ tổ chức kỳ thi khảo sát chất lượng học sinh lớp 12 môn Toán năm học 2020 – 2021, nhằm giúp các em ôn tập, chuẩn bị cho kỳ thi tốt nghiệp THPT 2021 môn Toán. Đề khảo sát chất lượng Toán 12 năm 2021 sở GD&ĐT thành phố Cần Thơ mã đề 106 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề khảo sát chất lượng Toán 12 năm 2021 sở GD&ĐT thành phố Cần Thơ : + Cho hình trụ có bán kính đáy bằng 3 2a. Biết rằng khi cắt hình trụ đã cho bởi một mặt phẳng song song với trục và cách trục một khoảng bằng 3a thì thiết diện thu được là một hình vuông. Thể tích của khối trụ đã cho bằng? + Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác vuông cân tại A, AB = AC = 3a và AA’ = 2a. Hình chiếu vuông góc của B lên mặt đáy là điểm H thuộc cạnh BC sao cho HC = 2HB. Khoảng cách từ điểm B đến mặt phẳng (B’AC) bằng? + Anh Nam mua một chiếc ô tô trị giá 700 triệu đồng với hình thức trả góp. Anh Nam trả trước 500 triệu đồng và phải chịu lãi suất 0,75% / tháng đối với số tiền còn nợ. Mỗi tháng, anh Nam trả một số tiền không đổi vào đúng ngày tính lãi. Hỏi số tiền không đổi mà anh Nam phải trả mỗi tháng là bao nhiêu, biết rằng sau đúng ba năm thì anh Nam trả hết nợ (làm tròn đến hàng nghìn)?
80 đề phát triển theo định hướng đề minh họa TN THPT 2021 môn Toán
Tài liệu gồm 436 trang, tuyển tập 80 đề Toán ôn thi tốt nghiệp THPT Quốc gia theo định hướng đề tham khảo tốt nghiệp THPT 2021 môn Toán của Bộ Giáo dục và Đào tạo. Trích dẫn tài liệu 80 đề phát triển theo định hướng đề minh họa TN THPT 2021 môn Toán: + Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên. Biết hàm số f(x) đạt cực trị tại hai điểm x1, x2 thỏa mãn x2 = x1 + 2 và f(x1) + f(x2) = 0. Gọi S1 và S2 là diện tích của hai hình phẳng được gạch như trong hình bên. Tỉ số S1 S2 bằng? + Trong không gian Oxyz, cho hai điểm A(2; 1; 3) và B(6; 5; 5). Xét khối nón (N) có đỉnh A, đường tròn đáy nằm trên mặt cầu đường kính AB. Khi (N) có thể tích lớn nhất thì mặt phẳng chứa đường tròn đáy của (N) có phương trình dạng 2x + by + cz + d = 0. Giá trị của b + c + d bằng? + Một người thợ có một khối đá hình trụ. Kẻ hai đường kính MN, PQ của hai đáy sao cho MN ⊥ PQ. Người thợ đó cắt khối đá theo các mặt cắt đi qua 3 trong 4 điểm M, N, P, Q để thu được khối đá có hình tứ diện MNPQ. Biết rằng MN = 60cm và thể tích khối tứ diện MNPQ bằng 36dm3. Tìm thể tích của lượng đá bị cắt bỏ (làm tròn kết quả đến 1 chữ số thập phân). A. 133, 6dm3. B. 133, 6dm3. C. 143, 6dm3. D. 123, 6dm3.
Đề đánh giá chất lượng Toán 12 năm 2020 - 2021 trường Đại học Hồng Đức - Thanh Hóa
Đề đánh giá chất lượng Toán 12 năm học 2020 – 2021 trường Đại học Hồng Đức – Thanh Hóa được biên soạn theo hình thức đề 100% trắc nghiệm, đề gồm 06 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề đánh giá chất lượng Toán 12 năm 2020 – 2021 trường Đại học Hồng Đức – Thanh Hóa : + Ông Đức gửi ngân hàng số tiền 500.000.000 đồng loại kỳ hạn 6 tháng với lãi suất 5,6% trên một năm theo thể thức lãi kép (tức là nếu đến kỳ hạn người gửi không rút lãi ra thì tiền lãi được tính vào vốn của kỳ kế tiếp). Hỏi sau 3 năm 9 tháng ông Đức nhận được số tiền (làm tròn đến hàng nghìn) cả gốc lẫn lãi là bao nhiêu? Biết rằng ông Đức không rút cả gốc lẫn lãi trong các định kỳ trước đó và nếu rút trước kỳ hạn thì ngân hàng trả lãi suất theo loại không kỳ hạn 0,00027% trên một ngày. (Một tháng tính 30 ngày). A 606.627.000 đồng. B 623.613.000 đồng. C 606.775.000 đồng. D 611.764.000 đồng. + Gọi S là tập hợp tất cả các số thực m sao cho đồ thị hàm số y = |2×4 − 4(m − 1)x2 − m2 + 3m − 2| có đúng 5 cực trị. Số phần tử m ∈ [−2021;2021] ∩ S có giá trị nguyên là? + Giả sử tồn tại số thực m sao cho phương trình ex − e−x = 2cosmx có 2021 nghiệm thực phân biệt. Số nghiệm phân biệt của phương trình ex + e−x = 2cosmx+4 là?