Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Khi nào thì $widehat xOy + widehat yOz widehat xOz$

Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề Khi nào thì $\widehat {xOy} + \widehat {yOz} = \widehat {xOz}$?, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 2: Góc. Mục tiêu : Kiến thức: + Hiểu được khi nào thì xOy + yOz = xOz? + Nắm vững được khái niệm hai góc kề nhau, hai góc phụ nhau, hai góc bù nhau, hai góc kề bù. Kĩ năng: + Nhận biết được hai góc kề nhau, hai góc phụ nhau, hai góc bù nhau, hai góc kề bù. + Biết cách cộng số đo hai góc kề nhau có cạnh chung nằm giữa hai cạnh còn lại. + Tính được số đo góc, chỉ ra được tia nằm giữa hai tia. I. LÍ THUYẾT TRỌNG TÂM Tính chất cộng số đo hai góc: + Nếu tia Oy nằm giữa tia Ox và Oz thì xOy + yOz = xOz. + Ngược lại, nếu xOy + yOz = xOz thì Oy nằm giữa hai tia Ox và Oz. Lưu ý: + Ta có thể dùng kết quả sau: Nếu xOy + yOz khác xOz thì Oy không nằm giữa hai tia Ox và Oz. + Cộng liên tiếp: Nếu tia Oy nằm giữa hai tia Ox và Ot; tia Oz nằm giữa hai tia Oy và Ot thì: xOy + yOz + zOt = xOt. Hai góc kề nhau, phụ nhau, bù nhau: + Hai góc kề nhau là hai góc có cạnh chung và hai cạnh còn lại nằm trên hai nửa mặt phẳng đối nhau bờ chứa cạnh chung. + Hai góc phụ nhau là hai góc có tổng số đo bằng 90°. + Hai góc bù nhau là hai góc có tổng số đo bằng 180°. Lưu ý: + Hai góc kề bù là hai góc vừa kề nhau vừa bù nhau. Hai góc kề bù có tổng số đo bằng 180°. + Hai góc cùng phụ (hoặc cùng bù) với một góc thứ ba thì bằng nhau. II. CÁC DẠNG BÀI TẬP Dạng 1 : Tính số đo góc. Sử dụng nhận xét và định nghĩa sau: + Nếu tia Oy nằm giữa hai tia Ox và Oz thì xOy + yOz = xOz. + Hai góc bù nhau có tổng số đo bằng 180°. + Hai góc phụ nhau có tổng số đo bằng 90°. Dạng 2 : Tia nằm giữa hai tia, tính số đo góc. Nếu xOy + yOz = xOz thì tia Oy nằm giữa hai tia Ox và Oz.

Nguồn: toanmath.com

Đọc Sách

Tài liệu dạy thêm - học thêm chuyên đề đoạn thẳng, trung điểm của đoạn thẳng
Tài liệu gồm 21 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề đoạn thẳng, trung điểm của đoạn thẳng, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Nhận biết đoạn thẳng. Mỗi đoạn thẳng có một độ dài. Độ dài đoạn thẳng là một số lớn hơn 0. Dạng 2. So sánh đoạn thẳng. Để so sánh hai đoạn thẳng, ta thường làm như sau: Bước 1. Đo độ dài của mỗi đoạn thẳng; Bước 2. So sánh độ dài của các đoạn thẳng đó. Dạng 3. Vẽ đoạn thẳng trên tia. Cho tia Ox vẽ điểm A trên tia Ox sao cho OA cm 4. Trên tia Ox ta luôn vẽ được một điểm M sao cho OM a cm. Cho tia Ox trên tia Ox vẽ hai điểm A và B sao cho OA cm 3 OB cm 5. Có nhận xét gì về vị trí của điểm A so với điểm O và B. + Trên cùng một tia Ox vẽ hai điểm A và B nếu OA OB thì điểm A nằm giữa hai điểm O và B. + Trên cùng một tia Ox vẽ ba điểm A B C nếu OA OB OC thì B nằm giữa A và C. Dạng 4. Trung điểm của đoạn thẳng. Cho đoạn thẳng AB cm 4. Điểm M thuộc đoạn AB sao cho AM BM cm 2. Khi đó điểm M gọi là trung điểm của đoạn AB. Dạng 4.1. Tính độ dài đoạn thẳng liên quan tới trung điểm. Dạng 4.2. Chứng minh một điểm là trung điểm của một đoạn thằng, chứng minh đẳng thức độ dài có liên quan. Dạng 5. Giải các bài toán thực tế có liên quan đến đoạn thẳng, độ dài đoạn thẳng và trung điểm của đoạn thẳng. Giải các bài toán thực tế có liên quan đến đoạn thẳng, độ dài đoạn thẳng và trung điểm của đoạn thẳng.
Tài liệu dạy thêm - học thêm chuyên đề điểm nằm giữa hai điểm, tia
Tài liệu gồm 14 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề điểm nằm giữa hai điểm, tia, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1: Nhận biết điểm thuộc đường thẳng và đường thẳng đi qua điểm. Xét xem trên đường thẳng có những điểm nào thì điểm ấy thuộc đường thẳng và đường thẳng đi qua những điểm ấy. Dạng 2: Vẽ điểm, vẽ đường thẳng theo một số điều kiện cho trước. Nên vẽ đường thẳng trước rồi tùy theo điểm thuộc đường thẳng hay không thuộc đường thẳng mà vẽ điểm sau. Dạng 3: Nhận biết ba điểm thẳng hàng. Muốn biết ba điểm có thẳng hàng hay không thẳng hàng ta cần xem ba điểm đó có cùng thuộc một đường thẳng hay không cùng thuộc một đường thẳng. Muốn vẽ 3 điểm thẳng hàng ta vẽ một đường thẳng rồi lấy 3 điểm trên một đường thẳng đó. Muốn vẽ 3 điểm không thẳng hàng ra vẽ một đường thẳng rồi lấy hai điểm trên đường thẳng, điểm còn lại lấy ở ngoài đường thẳng. Dạng 4: Đường thẳng đi qua hai điểm. Vận dụng tính chất “có một đường thẳng và chỉ một đường thẳng đi qua hai điểm”. Dạng 5: Chứng minh nhiều điểm thẳng hàng. Chứng minh các điểm này thuộc hai (hay nhiều) đường thẳng mà các đường thẳng này có hai điểm chung. Dạng 6: Vận dụng khái niệm điểm nằm giữa, điểm nằm khác phía, nằm cùng phía. Dựa vào nhận xét: Nếu điểm O nằm giữa hai điểm A và B thì ta có thể nói: Hai điểm A và B nằm khác phía đối với điểm O. Hai điểm O và B nằm cùng phía đối với điểm A. Hai điểm O và A nằm cùng phía đối với điểm B. Dạng 7. Nhận biết điểm nằm giữa hai điểm khác. – Dùng nhận xét nếu hai tia OA, OB đối nhau thì gốc O nằm giữa hai điểm A, B.
Tài liệu dạy thêm - học thêm chuyên đề hình có tâm đối xứng
Tài liệu gồm 14 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề hình có tâm đối xứng, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Kiểm tra hình có tâm đối xứng hay không? Nói đến tâm của hình (ta hiểu là điểm nằm chính giữa hình). Để kiểm tra xem điểm đó có là tâm đối xứng của hình hay không thì ta lấy một điểm bất kỳ trên (hay trong) hình, lấy đối xứng qua tâm thì ta được một điểm: + Nếu điểm đó vẫn thuộc hình thì hình đó có tâm đối xứng. + Nếu điểm đó không thuộc hình thì hình đó không có tâm đối xứng. Dạng 2. Tâm đối xứng của hình. Đối với những hình có tâm đối xứng thì hình đó có số cạnh (viền ngoài) là chẵn, hoặc trong thiên nhiên hình ảnh của bông hoa có tâm đối xứng nằm ở giữa (nhị hay nhụy hoa), hình ảnh của cỏ bốn lá cũng có tâm đối xứng. Đối với các hình có số cạnh bằng nhau (số cạnh chẵn) thì tâm đối xứng chính là giao của các đường chéo. Dạng 3. Chữ có tâm đối xứng. Để kiểm tra xem chữ có tâm đối xứng hay không thì trước tiên ta phải phán đoán tâm đối xứng của chữ (thường thì tâm của chữ nằm chính giữa chữ), sau đó lấy một điểm bất kỳ (thường lấy điểm ở vị trí đặc biệt) để kiểm tra. Nếu có một điểm khác đối xứng với điểm đã chọn mà vẫn thuộc chữ cái đó thì chữ cái đó có tâm đối xứng. Dạng 4. Vẽ hình đối xứng qua một điểm. Để vẽ điểm A’ đối xứng với điểm A qua O ta thực hiện như sau: Dựng đường tròn tâm O bán kính O OA đường tròn này cắt lại đường thẳng O AO tại điểm A’ khác A. Khi đó điểm A’ là điểm đối xứng với điểm A qua O. Để vẽ được 2 hình đối xứng với nhau qua 1 điểm O ta sẽ chọn một số điểm đặc biệt thuộc hình đó, lấy đối xứng qua O rồi nối các điểm đó lại để được hình mới đối xứng với hình đã cho qua tâm O. Dạng 5. Tính độ dài, chu vi, diện tích của hình có tâm đối xứng. Khi tính toán độ dài đoạn thẳng có tâm đối xứng, ta chú ý rằng tâm đối xứng là điểm chính giữa của đoạn thẳng hay trung điểm của đoạn thẳng đó. Tức là khi O tâm đối xứng của đoạn AB thì O là trung điểm của đoạn thẳng AB nên: OA OB AB 2. Một số hình phẳng có tâm đối xứng thường gặp: hình bình hành, hình vuông, hình chữ nhật, hình thoi, hình lục giác đều: – Tâm đối xứng của hình bình hành, hình vuông, hình chữ nhật, hình thoi là giao điểm của hai đường chéo. – Tâm đối xứng của hình lục giác đều là giao điểm của các đường chéo chính. Khi đó tâm đối xứng sẽ là trung điểm của mỗi đường chéo. Sau khi tính toán được độ dài các cạnh hoặc đường chéo ta sẽ vận dụng công thức tính chu vi, diện tích của các hình đã học trong chương IV để tính chu vi, diện tích các hình.
Tài liệu dạy thêm - học thêm chuyên đề hình có trục đối xứng
Tài liệu gồm 16 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề hình có trục đối xứng, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Nhận biết hình có trục đối xứng trong thực tế. Dựa vào khái niệm hình có trục đối xứng, học sinh quan sát các hình ảnh để nhận biết hình có trục đối xứng. Dạng 2. Xác định trục đối xứng của một số hình phẳng. Dựa vào khái niệm hình có trục đối xứng, học sinh quan sát các hình vẽ để tìm ra hình có trục đối xứng. Dạng 3. Ứng dụng của trục đối xứng trong cắt chữ và cắt hình. Để cắt một chữ cái và cắt hình có trục đối xứng, ta có thể gấp đôi tờ giấy theo trục đối xứng ấy để cắt. Khi đó chỉ phải cắt một nửa chữ cái và nhận được chữ cái khi mở giấy ra.