Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Nhị thức Newton và ứng dụng - Nguyễn Minh Tuấn

giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu chuyên đề nhị thức Newton và ứng dụng, tài liệu gồm 101 trang được biên soạn bởi các tác giả nhóm Tạp chí và Tư liệu Toán học: Nguyễn Minh Tuấn (chủ biên), Doãn Quang Tiến, Nguyễn Mai Hoàng Anh, Ngô Nguyên Quỳnh, Trần Văn Dũng; đề cập đến gần như là đầy đủ các dạng toán liên quan đến nhị thức Newton: tìm hệ số trong khai triển, chứng minh đẳng thức tổ hợp, và các biến dạng khác có thể gặp trong đề thi THPT Quốc Gia môn Toán hay đề thi học sinh giỏi môn Toán cấp tỉnh mảng không chuyên, nhằm giúp các bạn có cái nhìn bao quát về chủ đề này. Khái quát nội dung tài liệu nhị thức Newton và ứng dụng – Nguyễn Minh Tuấn: Phần 1 . Kí hiệu tổ hợp. + Vấn đề 1.1 Hệ số nhị thức. + Vấn đề 1.2 Công thức tổ hợp. Phần 2 . Tam giác Pascal và sự hình thành của công thức nhị thức Newton. + Vấn đề 2.1 Sự hình thành của công thức nhị thức. + Vấn đề 2.2 Câu chuyện về nhị thức Newton. + Vấn đề 2.3 Tam giác Pascal. + Vấn đề 2.4 Chứng minh công thức tổng quát p_n,k và công thức nhị thức Newton. + Vấn đề 2.5 Chứng minh công thức nhị thức Newton. Phần 3 . Một số tính chất cơ bản. + Vấn đề 3.1 Nhắc lại khai triển nhị thức Newton. + Vấn đề 3.2 Dấu hiệu các bài toán sử dụng nhị thức Newton trong các bài toán chứng minh đẳng thức. [ads] Phần 4 . Các dạng toán liên quan tới nhị thức newton. + Vấn đề 4.1 Bài toán khai triển nhị thức và chứng minh đẳng thức cơ bản. + Vấn đề 4.2 Bài toán về hệ số lớn nhất. + Vấn đề 4.3 Chứng minh các đẳng thức. + Vấn đề 4. Các đẳng thức cơ bản. + Vấn đề 4. Ứng dụng một số tính chất đẳng thức đặc biệt. + Vấn đề 4.4 Ứng dụng đạo hàm trong chứng minh đẳng thức tổ hợp. + Vấn đề 4.5 Ứng dụng tích phân trong chứng minh đẳng thức tổ hợp. + Vấn đề 4.6 Ứng dụng số phức chứng minh đẳng thức tổ hợp. + Vấn đề 4.7 Đồng nhất hệ số. + Vấn đề 4.8 Bài tập tự luyện. Phần 5 . Bất đẳng thức liên quan tới công thức tổ hợp. + Vấn đề 5.1 Lí thuyết và ví dụ minh họa. + Vấn đề 5.2 Bài tập tự giải. Phần 6 . Tính chất số học của hệ số nhị thức. + Vấn đề 6.1 Đôi nét về lịch sử nghiên cứu tính chất số học của hệ số nhị thức. + Vấn đề 6.2 Các bài toán minh họa.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề tổ hợp và xác suất - Lê Minh Tâm
Tài liệu gồm 196 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, trình bày lý thuyết trọng tâm, phương pháp giải các dạng toán và bài tập trắc nghiệm chuyên đề tổ hợp và xác suất (Đại số và Giải tích 11 chương 2). BÀI 01 . QUY TẮC ĐẾM. I. CÁC QUY TẮC ĐẾM. II. BÀI TẬP TỰ LUẬN. III. BÀI TẬP TRẮC NGHIỆM. BÀI 02 . TỔ HỢP – CHỈNH HỢP – HOÁN VỊ. I. HOÁN VỊ. II. CHỈNH HỢP. III. TỔ HỢP. IV. BÀI TẬP TỰ LUẬN. + Dạng 1. BÀI TẬP VỀ HOÁN VỊ. + Dạng 2. BÀI TẬP VỀ CHỈNH HỢP. + Dạng 3. BÀI TẬP VỀ TỔ HỢP. + Dạng 4. CHỨNG MINH ĐẲNG THỨC LIÊN QUAN. + Dạng 5. PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH CÓ CHỨA CÁC SỐ. V. BÀI TẬP TRẮC NGHIỆM. BÀI 03 . NHỊ THỨC NEWTON. I. CÔNG THỨC NHỊ THỨC NEWTON. II. TAM GIÁC PASCAL. III. CÁC DẠNG BÀI TẬP. + Dạng 1. KHAI TRIỂN NHỊ THỨC. + Dạng 2. TÌM HỆ SỐ HOẶC SỐ HẠNG THỎA MÃN ĐIỀU KIỆN. + Dạng 3. CHỨNG MINH HOẶC TÍNH TỔNG. IV. BÀI TẬP RÈN LUYỆN. BÀI 04 . BIẾN CỐ & XÁC SUẤT CỦA BIẾN CỐ. I. PHÉP THỬ VÀ KHÔNG GIAN MẪU. II. BIẾN CỐ & XÁC SUẤT CỦA BIẾN CỐ. III. PHÉP TOÁN TRÊN CÁC BIẾN CỐ. IV. CÁC BIẾN CỐ ĐỘC LẬP, CÔNG THỨC NHÂN XÁC SUẤT. V. CÁC DẠNG BÀI TẬP. + Dạng 1. TÍNH XÁC SUẤT CỦA BIẾN CỐ. + Dạng 2. CÁC QUY TẮC TÍNH XÁC SUẤT. VI. BÀI TẬP TỰ LUẬN. VII. BÀI TẬP TRẮC NGHIỆM. BÀI 05 . TỔNG ÔN TẬP CHƯƠNG. I. QUY TẮC ĐẾM. II. HOÁN VỊ – CHỈNH HỢP – TỔ HỢP. III. NHỊ THỨC NEWTON. IV. XÁC SUẤT CỦA BIẾN CỐ.
Phân loại và phương pháp giải bài tập tổ hợp và xác suất
Tài liệu gồm 106 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tóm tắt lý thuyết, phân loại và phương pháp giải bài tập tổ hợp và xác suất, giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 2 (Toán 11). BÀI 1 . QUY TẮC ĐẾM. Dạng 1. Quy tắc cộng. Dạng 2. Quy tắc nhân. BÀI 2 . HOÁN VỊ – CHỈNH HỢP – TỔ HỢP. Dạng 1. Hoán vị. Dạng 2. Chỉnh hợp. Dạng 3. Tổ hợp. Dạng 4. Phương trình – bất phương trình. BÀI 3 . NHỊ THỨC NIU-TƠN. Dạng 1. Xác định hệ số hoặc số hạng chứa x^k. Dạng 2. Tìm số hạng đứng chính giữa. Dạng 3. Tìm hệ số lớn nhất trong khai triển nhị thức Niu-tơn của (a + b)^n. Dạng 4. Tìm số hạng hữu tỉ trong khai triển (a + b)^n. Dạng 5. Tính tổng hoặc chứng minh đẳng thức. BÀI 4 – 5 . BIẾN CỐ VÀ XÁC SUẤT CỦA BIẾN CỐ. Dạng 1. Tính xác suất dựa vào định nghĩa cổ điển. Dạng 2. Quy tắc tính xác suất.
Tổng ôn tập TN THPT 2021 môn Toán Tổ hợp và xác suất
Tài liệu gồm 30 trang, được tổng hợp bởi thầy giáo Nguyễn Bảo Vương, tuyển tập câu hỏi và bài tập trắc nghiệm chuyên đề tổ hợp và xác suất, có đáp án và lời giải chi tiết. Các câu hỏi và bài tập được trích từ các đề thi thử tốt nghiệp THPT năm 2021 môn Toán của các trường THPT và sở GD&ĐT trên cả nước, với mục đích giúp các em học sinh rèn luyện, rà soát kiến thức chủ đề Toán 11 (Đại số và Giải tích 11 chương 2), trước khi bước vào kỳ thi tốt nghiệp THPT 2021 môn Toán và các kỳ thi tuyển sinh Đại học – Cao đẳng. Mục lục tài liệu tổng ôn tập TN THPT 2021 môn Toán: Tổ hợp và xác suất: 1. Mức độ nhận biết: 23 câu. + Câu hỏi và bài tập (Trang 01). + Đáp án và lời giải chi tiết (Trang 03). 2. Mức độ thông hiểu: 21 câu. + Câu hỏi và bài tập (Trang 07). + Đáp án và lời giải chi tiết (Trang 09). 3. Mức độ vận dụng thấp: 17 câu. + Câu hỏi và bài tập (Trang 14). + Đáp án và lời giải chi tiết (Trang 16). 4. Mức độ vận dụng cao: 13 câu. + Câu hỏi và bài tập (Trang 22). + Đáp án và lời giải chi tiết (Trang 24).
Tuyển tập một số bài toán tổ hợp ôn thi HSG Toán
Tổ hợp là một vấn đề khó của Toán sơ cấp nói chung cũng như trong các kì thi Toán các cấp thì chủ đề này luôn có một chỗ đứng nhất định. Các bài toán tổ hợp đôi khi không cần những biến đổi toán học phức tạp mà đòi hỏi tư duy nhạy bén của người làm bài, vì vậy việc luyện tập với nhiều bài toán sẽ giúp chúng ta luyện thêm kiến thức và kĩ năng xử lý các bài toán này. Với mong muốn tạo ra một tài liệu giúp các bạn học sinh ôn luyện chủ đề khó nhằn này, Tạp Chí Và Tư Liệu Toán Học đã cố gắng tổng hợp nhiều bài đã sưu tầm được thành một tuyển tập nho nhỏ giúp các bạn luyện tập chuẩn bị cho các kì thi Olympic Toán sắp tới mà các bạn tham dự. Tài liệu là sự kết hợp của nhiều nguồn, nhiều tài liệu khác lại nhằm mang tới cho bạn đọc những bài toán thú vị nhất. Trong này sẽ không đề cập tới các phương pháp như: đếm bằng hai cách, truy hồi, song ánh, hàm sinh …. Các bạn có thể tìm đọc chúng ở các tài liệu khác. Hy vọng đây sẽ là công cụ đắc lực của các bạn. Xem thêm : + Một số chuyên đề toán tổ hợp bồi dưỡng học sinh giỏi THPT – Phạm Minh Phương + Tuyển tập các chuyên đề tổ hợp