Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra học kỳ 2 Toán 9 năm 2021 - 2022 sở GDĐT Đồng Nai

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng cuối học kỳ 2 môn Toán 9 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Đồng Nai; đề thi có đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm. Trích dẫn đề kiểm tra học kỳ 2 Toán 9 năm 2021 – 2022 sở GD&ĐT Đồng Nai : + Tính diện tích toàn phần của hình trụ có chiều cao bằng 3 dm và bán kính đáy bằng 2 dm (học sinh không cần vẽ hình khi giải câu này). + Bác Thành có một khu vườn hình chữ nhật biết chiều dài hơn chiều rộng 10 m và diện tích bằng 1200 m2; bác Thành xây bức tường bao quanh khu vườn, xây theo chu vi của khu vườn với giá thành được tính mỗi mét của bức tường đo theo chu vi của khu vườn (bên ngoài) có giá là 700 nghìn đồng, không kể phần cổng của khu vườn dài 3 mét. Tính số tiền bác Thành dùng để xây bức tường nói trên. + Cho tam giác nhọn ABC có hai đường cao BE và CF cắt nhau tại điểm H. 1) Chứng minh tứ giác AEHF nội tiếp đường tròn. 2) Chứng minh FEC + ABC = 180. 3) Gọi D là giao điểm của hai đường thẳng AH và BC. Chứng minh H là tâm của đường tròn nội tiếp tam giác DEF.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 2 Toán 9 năm 2023 - 2024 trường THCS Nguyễn Trường Tộ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi cuối học kỳ 2 môn Toán 9 năm học 2023 – 2024 trường THCS Nguyễn Trường Tộ, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 05 tháng 04 năm 2024. Trích dẫn Đề thi học kỳ 2 Toán 9 năm 2023 – 2024 trường THCS Nguyễn Trường Tộ – Hà Nội : + Giải bài toán sau bằng cách lập phương trình, hệ phương trình: Một công nhân được giao khoán sản xuất 120 sản phẩm trong thời gian nhất định. Trên thực tế, nhờ hợp lí hóa một số thao tác nên mỗi giờ người đó làm thêm được 3 sản phẩm nữa. Nhờ đó người công nhân hoàn thành công việc sớm hơn 2 giờ. Hỏi mỗi giờ người đó dự định làm bao nhiêu sản phẩm? + Cho đường tròn (O; R) và một đường thẳng d cắt (O) tại C, D. Lấy điểm M bất kỳ trên d sao cho MC > MD và điểm M nằm ngoài đường tròn (O). Qua M kẻ hai tiếp tuyến MA, MB với đường tròn (O); A, B là các tiếp điểm. Gọi H là trung điểm CD. Chứng minh: a) Năm điểm A, B, M, O, H cùng thuộc một đường tròn. b) Chứng minh MA2 = MC.MD và HM là tia phân giác của AHB. c) Vẽ DK // AM (K thuộc AB). Chứng minh HK // AC. + Cho x, y là những số thực thỏa mãn điều kiện x2 + y2 = 1, tìm giá trị lớn nhất của biểu thức P = x/(y + 2).