Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Toàn cảnh đề chính thức và đề minh họa THPT 2020 môn Toán của Bộ GDĐT

Tài liệu gồm 198 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Toán, phân loại và hướng dẫn giải các câu hỏi và bài toán trong đề chính thức và đề minh họa THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo. Mục lục tài liệu toàn cảnh đề chính thức và đề minh họa THPT 2020 môn Toán của Bộ GD&ĐT: 1. PHÉP ĐẾM (QUY TẮC CỘNG – QUY TẮC NHÂN). 2. HOÁN VỊ – CHỈNH HỢP – TỔ HỢP. 2.1 Đếm số (chỉ dùng một loại P hoặc A hoặc C). 2.2 Chọn người, vật. 3. XÁC SUẤT. 4. CẤP SỐ CỘNG. 5. CẤP SỐ NHÂN. 6. ĐƯỜNG THẲNG VUÔNG GÓC MẶT PHẲNG. 6.1 Góc giữa đường thẳng và mặt phẳng. 6.2 Góc giữa đường thẳng và mặt phẳng. 7. KHOẢNG CÁCH. 7.1 Từ chân H của đường cao đến mặt phẳng cắt đường cao. 7.2 Từ điểm M (khác H) đến mặt phẳng cắt đường cao. 7.3 Hai đường chéo nhau (vẽ đoạn vuông góc chung). 7.4 Hai đường chéo nhau (mượn mặt phẳng). 8. TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ. 8.1 Xét tính đơn điệu của hàm số (biết đồ thị, bảng biến thiên của y). 8.2 Điều kiện để hàm số bậc ba đơn điệu trên khoảng K. 8.3 Điều kiện để hàm số nhất biến đơn điệu trên khoảng K. 8.4 Đơn điệu liên quan hàm hợp, hàm ẩn. 8.5 Ứng dụng tính đơn điệu vào PT – BPT – HPT – BĐT. 9. CỰC TRỊ CỦA HÀM SỐ. 9.1 Tìm cực trị của hàm số cho bởi công thức của y, y’. 9.2 Tìm cực trị, điểm cực trị, số điểm cực trị (khi biết đồ thị, bảng biến thiên của y). 9.3 Tìm cực trị, điểm cực trị, số điểm cực trị (khi biết đồ thị, bảng xét dấu của y’). 9.4 Cực trị liên quan hàm hợp, hàm ẩn. 9.5 Cực trị liên quan hàm chứa dấu giá trị tuyệt đối. 10. GIÁ TRỊ LỚN NHẤT – GIÁ TRỊ NHỎ NHẤT CỦA HÀM SỐ. 10.1 GTLN – GTNN của f(x) trên đoạn [a;b] biết biểu thức f(x). 10.2 Tìm m để hàm số f(x) có GTLN – GTNN thỏa mãn điều kiện cho trước. 10.3 GTLN – GTNN hàm nhiều biến dạng khác. 11. TIỆM CẬN CỦA ĐỒ THỊ HÀM SỐ. 11.1 Tiệm cận đồ thị hàm số phân thức hữu tỷ, không chứa tham số. 11.2 Tiệm cận đồ thị hàm số f(x) dựa vào bảng biến thiên không tham số. 12. ĐỌC ĐỒ THỊ – BIẾN ĐỔI ĐỒ THỊ. 12.1 Nhận dạng các hàm số thường gặp (biết đồ thị, bảng biến thiên). 12.2 Xét dấu hệ số của biểu thức (biết đồ thị, bảng biến thiên). 12.3 Đọc đồ thị của đạo hàm (các cấp. 12. TƯƠNG GIAO CỦA HAI ĐỒ THỊ. 12.1 Tìm toạ độ (đếm) giao điểm. 12.2 Đếm số nghiệm phương trình cụ thể (cho đồ thị, bảng biến thiên). 12.3 Tương giao liên quan hàm hợp, hàm ẩn. 12.4 Điều kiện để f(x) = g(m) có n nghiệm (chứa GTTĐ). 12.5 Điều kiện để f(x) = g(m) có n nghiệm thuộc K (không GTTĐ). 13. MŨ – LŨY THỪA. 13.1 Kiểm tra quy tắc biến đổi lũy thừa, tính chất. 13.2 Tính toán, rút gọn các biểu thức có chứa biến(a, b, c, x, y, . . .). 14. LOGARIT. 14.1 Câu hỏi lý thuyết và tính chất. 14.2 Biến đổi các biểu thức logarit liên quan a, b, x, y. 14.3 Tính giá trị các biểu thức logarit không dùng BĐT. 14.4 Dạng toán khác về logarit. 15. HÀM SỐ MŨ – LOGARIT. 15.1 Tập xác định liên quan hàm số mũ, hàm số logarit. 15.2 Đạo hàm liên quan hàm số mũ, hàm số logarit. 15.3 Đồ thị liên quan hàm số mũ, logarit. 15.4 Câu hỏi tổng hợp liên quan hàm số lũy thừa, mũ, logarit. 15.5 Bài toán lãi suất. 15.6 Bài toán tăng trưởng. 15.6 Hàm số mũ,logarit chứa tham số. 15.6 GTLN – GTNN liên quan hàm mũ, hàm logarit(nhiều biến). 16. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH MŨ. 16.1 PT – BPT mũ cơ bản, gần cơ bản (không tham số). 16.2 Phương pháp đưa về cùng cơ số (không tham số). 16.3 Phương pháp hàm số, đánh giá (không tham số). 17. PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH LOGARIT. 17.1 Câu hỏi lý thuyết. 17.2 PT – BPT logarit cơ bản, gần cơ bản (không tham số). 17.3 Phương pháp đưa về cùng cơ số (không tham số). 17.4 Phương pháp phân tích thành nhân tử (không tham số). 17.5 Phương pháp hàm số, đánh giá (không tham số). 17.6 Phương trình logarit có chứa tham số. 17.7 Phương trình, bất phương trình tổ hợp cả mũ và logarit có tham số. 18. NGUYÊN HÀM. 18.1 Định nghĩa, tính chất của nguyên hàm. 18.2 Nguyên hàm của hàm số cơ bản, gần cơ bản. 18.3 Nguyên hàm phân thức. 18.4 Phương trình nguyên hàm từng phần. 18.5 Nguyên hàm kết hợp đổi biến và từng phần hàm xác định. 18.6 Nguyên hàm liên quan đến hàm ẩn. 19. TÍCH PHÂN. 19.1 Kiểm tra định nghĩa, tính chất của tích phân. 19.2 Tích phân cơ bản, kết hợp tính chất. 19.3 Phương pháp tích phân từng phần hàm xác định. 19.4 Kết hợp đổi biến và từng phần tính tích phân hàm xác định. 19.5 Tích phân liên quan đến phương trình hàm ẩn. 20. ỨNG DỤNG TÍCH PHÂN. 20.1 Xác định công thức tính diện tích, thể tích dựa vào đồ thị. 20.2 Diện tích hình phẳng được giới hạn bởi các đồ thị hàm xác định. 20.3 Thể tích giới hạn bởi các đồ thị (tròn xoay) hàm xác định. 21. KHÁI NIỆM SỐ PHỨC. 21.1 Các yếu tố và thuộc tính cơ bản của số phức. 22. CÁC PHÉP TOÁN SỐ PHỨC. 22.1 Thực hiện các phép toán cơ bản về số phức. 22.2 Xác định các yếu tố của số phức (phần thực, ảo, mô đun, liên hợp) qua các phép toán. 22.3 Giải phương trình bậc nhất theo z (và z liên hợp). 23. BIỂU DIỄN HÌNH HỌC CỦA SỐ PHỨC. 23.1 Câu hỏi lý thuyết, biểu diễn hình học của số phức. 23.2 Tập hợp điểm biểu diễn là đường tròn, hình tròn. 24. PHƯƠNG TRÌNH BẬC HAI VỚI HỆ SỐ THỰC. 24.1 Tính toán biểu thức nghiệm. 24.1 Các bài toán biểu diễn hình học nghiệm của phương trình. 24.1 Các bài toán khác về phương trình. 25. THỂ TÍCH KHỐI CHÓP. 25.1 Câu hỏi dạng lý thuyết (công thức V, h, B). 25.2 Thể tích khối chóp đều. 25.3 Thể tích khối chóp khác. 25.4 Tỉ số thể tích trong khối chóp. 26. THỂ TÍCH KHỐI LĂNG TRỤ – ĐA DIỆN KHÁC. 26.1 Câu hỏi dạng lý thuyết(Công thức V, h, B). 26.2 Thể tích khối lập phương, khối hộp chữ nhật. 26.3 Thể tích khối lăng trụ đều. 26.4 Thể tích khối đa diện phức tạp. 27. KHỐI NÓN. 27.1 Câu hỏi lý thuyết về khối nón. 27.1 Diện tích xung quanh, diện tích toàn phần, thể tích (liên quan) khối nón khi biết các dữ kiện cơ bản. 28. KHỐI TRỤ. 28.1 Diện tích xung quanh, diện tích toàn phần, thể tích (liên quan) khối trụ khi biết các dữ kiện cơ bản. 28.2 Bài toán thực tế về khối trụ. 29. KHỐI CẦU. 29.1 Câu hỏi chỉ liên quan đến biến đổi V, S, R. 29.2 Khối cầu nội – ngoại tiếp, liên kết khối đa diện. 29.3 Bài toán tổng hợp về khối nón, khối trụ, khối cầu. 30. TỌA ĐỘ ĐIỂM – VECTƠ. 30.1 Hình chiếu của điểm lên các trục tọa độ, lên các mặt phẳng tọa độ và điểm đối xứng của nó. 31. PHƯƠNG TRÌNH MẶT CẦU. 31.1 Tìm tâm và bán kính, điều kiện xác định mặt cầu. 32.1 Điểm thuộc mặt cầu thoả điều kiện. 32. PHƯƠNG TRÌNH MẶT PHẲNG. 32.1 Tìm VTPT, các vấn đề về lý thuyết. 32.2 Phương trình mặt phẳng trung trực của đoạn thẳng. 32.3 Phương trình mặt phẳng qua một điểm, dễ tìm VTPT (không dùng tích có hướng). 33.4 Phương trình mặt phẳng qua một điểm, song song với một mặt phẳng. 33.5 Phương trình mặt phẳng theo đoạn chắn. 33.6 Phương trình mặt phẳng qua một điểm, vuông góc với đường thẳng. 33. PHƯƠNG TRÌNH ĐƯỜNG THẲNG. 33.1 Các câu hỏi chưa phân dạng. 33.2 Tìm VTCP, các vấn đề về lý thuyết. 33.3 Phương trình đường thẳng qua một điểm, dễ tìm VTCP (không dùng tích có hướng). 33.4 Phương trình đường thẳng qua một điểm, thoả điều kiện khác. 33.5 Toán GTLN – GTNN liên quan đến đường thẳng.

Nguồn: toanmath.com

Đọc Sách

Phát triển đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020
Nội dung Phát triển đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020 Bản PDF - Nội dung bài viết Phát triển bộ đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020 Phát triển bộ đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020 Trong bối cảnh học sinh trở lại trường sau thời gian dài nghỉ học vì dịch bệnh, đặc biệt là học sinh khối 12 đang chuẩn bị cho kỳ thi THPT Quốc gia, tập thể quý thầy cô nhóm Geogebra - Nguyễn Chín Em đã sáng tạo và phát triển bộ đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020. Bộ tài liệu gồm 218 trang, chứa một loạt câu hỏi và bài tập được xây dựng dựa trên cấu trúc logic, giúp học sinh hiểu rõ, áp dụng kiến thức vào thực tế một cách hiệu quả.
Đề tham khảo THPTQG 2020 môn Toán và các bài toán phát triển theo chủ đề
Nội dung Đề tham khảo THPTQG 2020 môn Toán và các bài toán phát triển theo chủ đề Bản PDF - Nội dung bài viết Đề tham khảo THPTQG 2020 môn Toán và bài toán phát triển Đề tham khảo THPTQG 2020 môn Toán và bài toán phát triển Tài liệu đề tham khảo THPTQG 2020 môn Toán được biên soạn bởi nhóm Strong Team Toán VD – VDC, gồm 105 trang chứa các câu hỏi và bài toán minh họa trong đề thi. Tất cả các bài toán đều được giải chi tiết theo nhiều cách khác nhau, giúp học sinh hiểu rõ hơn về cách giải và rèn luyện kỹ năng ra đề. Tài liệu được chia thành hai phần tùy theo mức độ nhận thức: Phần 1: Mức độ Nhận biết – Thông hiểu từ trang 1 đến trang 68. Phần 2: Mức độ Vận dụng từ trang 69 đến trang 105. Ví dụ về các bài toán trong tài liệu: Cho hình nón đỉnh S có đáy là hình tròn tâm O. Một mặt phẳng cắt hình nón theo thiết diện là tam giác vuông diện tích bằng 4. Tìm thể tích của khối nón. Cho hàm số y = f(x) liên tục trên R, gọi S là tập hợp các giá trị nguyên m để phương trình f(sin x) = 3sinx + m có nghiệm thuộc khoảng (0;π). Tính tổng các phần tử của S. Trong không gian Oxyz, mặt cầu (S) : x^2 + y^2 + z^2 − 4x − 2y + 2z − 3 = 0 và điểm M (4; 2; −2). Điểm M thuộc tâm, trên, trong hay ngoài mặt cầu (S)? Đề tham khảo này không chỉ giúp học sinh ôn tập hiệu quả mà còn phát triển khả năng giải quyết các dạng toán phổ biến trong đề thi THPT Quốc Gia môn Toán.
Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán
Nội dung Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán Bản PDF - Nội dung bài viết Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán: "Dựa trên " Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán: "Dựa trên " Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán dựa trên nền tảng của chương trình học và kiến thức cơ bản trong sách giáo khoa. Đề thi được xây dựng với mục tiêu giúp học sinh rèn luyện kỹ năng giải quyết vấn đề, tư duy logic và phân tích một cách logic và tổng hợp thông tin. Bên cạnh việc đánh giá kiến thức, đề thi cũng tập trung vào việc khuyến khích học sinh phát triển khả năng sáng tạo, tự tin và kiên nhẫn khi giải các bài toán khó. Các câu hỏi trong đề thi không chỉ yêu cầu kiến thức mà còn đòi hỏi học sinh có khả năng áp dụng kiến thức vào các tình huống thực tế và bài toán đa chiều. Với sự phong phú và đa dạng về nội dung, đề thi tham khảo môn Toán sẽ giúp học sinh tự tin và sẵn sàng tham gia kỳ thi quan trọng. Đồng thời, đề thi cũng là công cụ hữu ích giúp giáo viên đánh giá năng lực học sinh và điều chỉnh phương pháp dạy học phù hợp.
Phân tích một số câu vận dụng trong đề minh họa THPTQG 2020 môn Toán
Nội dung Phân tích một số câu vận dụng trong đề minh họa THPTQG 2020 môn Toán Bản PDF - Nội dung bài viết Phân tích các bài toán vận dụng trong đề minh họa THPTQG 2020 môn Toán Phân tích các bài toán vận dụng trong đề minh họa THPTQG 2020 môn Toán Tài liệu được biên soạn bởi thầy giáo Nguyễn Minh Nhiên, bao gồm 39 trang trình bày lời giải chi tiết và phân tích sâu một số bài toán vận dụng cao trong đề minh họa THPT Quốc gia môn Toán năm học 2019 – 2020. Cụ thể, các bài toán được phân tích bao gồm: câu 38, câu 43, câu 46, câu 48, câu 49, và câu 50. Thông qua việc phân tích chi tiết các bài toán này, tài liệu giúp học sinh hiểu rõ hơn về cách tiếp cận và giải quyết các dạng toán vận dụng - vận dụng cao trong các bài toán thực tế.