Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Quảng Ngãi

Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Quảng Ngãi Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020-2021 Sở GD&ĐT Quảng Ngãi Đề tuyển sinh THPT môn Toán năm 2020-2021 Sở GD&ĐT Quảng Ngãi Ngày 17 tháng 07 năm 2020, Sở Giáo dục và Đào tạo tỉnh Quảng Ngãi đã tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán cho năm học 2020-2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020-2021 của Sở GD&ĐT Quảng Ngãi bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài thi là 120 phút, đề thi cung cấp đáp án và lời giải chi tiết. Trích đề tuyển sinh lớp 10 THPT môn Toán năm 2020-2021 Sở GD&ĐT Quảng Ngãi: - Bài toán 1: Bạn An muốn mua một cái cặp và một đôi giày, giá niêm yết tổng cộng là 850.000 đồng. Sau khi được giảm giá, An chỉ mất 785.000 đồng để mua cả hai vật dụng. Yêu cầu tính giá niêm yết của từng vật dụng. - Bài toán 2: Cho nửa đường tròn đường tâm O, đường kính AB và một điểm M bất kì trên nửa đường tròn đó. Xác định vị trí các điểm trên đường tròn để chứng minh các tính chất của các hình học được đề ra. - Bài toán 3: Xác định tham số a trong hàm số y = ax^2 sao cho đồ thị của hàm số đi qua điểm M(2;8) và vẽ đồ thị ứng với giá trị a. Đề tuyển sinh môn Toán năm 2020-2021 của Sở GD&ĐT Quảng Ngãi không chỉ giúp học sinh ôn tập kiến thức mà còn phát triển kỹ năng giải quyết bài toán và tư duy logic. Đây là cơ hội để học sinh thể hiện khả năng và chuẩn bị cho một năm học mới thành công.

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - TT Huế
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Quốc học – Thừa Thiên Huế gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn (O) có tâm O và hai điểm C, D trên (O) sao cho ba điểm C, O, D không thẳng hàng. Gọi Ct là tia đối của tia CD, M là điểm tùy ý trên Ct, M khác C. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (O) (A và B là các tiếp điểm, B thuộc cung nhỏ CD). Gọi I là trung điểm của CD, H là giao điểm của đường thẳng MO và đường thẳng AB [ads] a) Chứng minh tứ giác MAIB nội tiếp b) Chứng minh đường thẳng AB luôn đi qua một điểm cố định khi M di động trên tia Ct
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Thừa Thiên Huế
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Thừa Thiên Huế gồm 6 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho hai vòi nước cùng chảy vào một bể không có nước thì sau 5 giờ đầy bể. Nếu lúc đầu chỉ mở vòi thứ nhất chảy trong 2 giờ rồi đóng lại, sau đó mở vòi thứ hai chảy trong 1 giờ thì ta được 1/4 bể nước. Hỏi nếu mở riêng từng vòi thì thời gian để mỗi vòi chảy đầy bể là bao nhiêu? + Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp đường tròn (O) và D là hình chiếu vuông góc của B trên AO sao cho D nằm giữa A và O. Gọi M là trung điểm BC, N là giao điểm của BD và AC, F là giao điểm của MD và AC, E là giao điểm thứ hai của BD với đường tròn (O), H là giao điểm của BF và AD. Chứng minh rằng: [ads] a) Tứ giác BDOM nội tiếp và góc MOD + góc NAE = 180 độ b) DF song song với CE, từ đó suy ra NE.NF = NC.ND c) CA là tia phân giác của góc BCE. d) HN vuông góc với AB + Một cốc nước có dạng hình trụ có bán kính đáy bằng 3 cm, chiều cao bằng 12cm và chứa một lượng nước cao 10 cm. Người ta thả từ từ 3 viên bi làm bằng thủy tinh có cùng đường kính bằng 2 cm vào cốc nước. Hỏi mực nước trong cốc lúc này cao bao nhiêu?
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Đà Nẵng
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Đà Nẵng gồm 5 bài toán tự luận. Trích một số bài toán trong đề: + Một đội xe cần vận chuyển 160 tấn gạo với khối lượng mỗi xe chở bằng nhau. Khi sắp khởi hành thì được bổ sung thêm 4 xe nữa nên mỗi xe chở ít hơn dự định lúc đầu 2 tấn gạo (khối lượng mỗi xe chở vẫn bằng nhau). Hỏi đội xe ban đầu có bao nhiêu chiếc? + Cho nửa đường tròn tâm O đường kính AB và C là một điểm trên nửa đường tròn (C khác A, B). Trên cung AC lấy D (D khác A và C). Gọi H là hình chiếu vuông góc của C lên AB và E là giao điểm của BD và CH [ads] a) Chứng minh ADEH là tứ giác nội tiếp b) Chứng minh rằng góc ACO = góc HCB và AB.AC = AC.AH + CB.CH c) Trên đoạn OC lấy điểm M sao cho OM = CH. Chứng minh rằng khi C thay đổi trên nữa đường tròn đã cho thì M chạy trên một đường tròn cố định
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán sở GD và ĐT Tây Ninh
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán sở GD và ĐT Tây Ninh (Đề chung dành cho tất cả thí sinh) gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho tam giác ABC vuông tại A, có sinACB = 3/5. Tính tanABC. + Cho tam giác ABC nhọn (AB < AC) nội tiếp trong đường tròn (O). Gọi D là điểm chính giữa cung lớn BC. Gọi E, F lần lượt là chân đường vuông góc kẻ từ D đến đường phân giác trong góc B và đường phân giác trong góc C của tam giác ABC. Chứng minh trung điểm H của EF cách đều hai điểm B và C.