Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh chuyên năm 2020 2021 sở GD ĐT Nam Định (Đề chuyên)

Nội dung Đề Toán tuyển sinh chuyên năm 2020 2021 sở GD ĐT Nam Định (Đề chuyên) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh chuyên năm 2020 2021 sở GD ĐT Nam Định (Đề chuyên) Đề Toán tuyển sinh chuyên năm 2020 2021 sở GD ĐT Nam Định (Đề chuyên) Ngày 09 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Nam Định đã tổ chức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán cho năm học 2020 - 2021. Đề Toán tuyển sinh lớp 10 chuyên năm 2020 - 2021 sở GD&ĐT Nam Định (Đề chuyên) được thiết kế dành cho học sinh muốn thi vào các lớp chuyên Toán. Đề bao gồm 01 trang với 05 bài toán, thời gian làm bài thi được xác định là 150 phút. Trích dẫn một số bài toán từ đề Toán tuyển sinh lớp 10 chuyên năm 2020 - 2021 sở GD&ĐT Nam Định (Đề chuyên): 1. Cho tam giác nhọn ABC có AB < AC nội tiếp đường tròn (O). Một đường tròn tiếp xúc với các cạnh AB, AC tại M, N và có tâm I thuộc cạnh BC. Kẻ đường cao AH của tam giác ABC. Câu hỏi đưa ra gồm các phần a, b, c liên quan đến quan hệ giữa các điểm A, M, H, I, N và chứng minh một số tính chất của tam giác ABC. 2. Đề bài thứ hai liên quan đến việc chứng minh một bất đẳng thức với điều kiện a + b + c = 1 và a, b, c là các số thực không âm. 3. Bài toán cuối cùng liên quan đến việc chia sỏi trong túi theo quy trình nhất định và đặt ra câu hỏi về khả năng tạo ra trường hợp mỗi túi có đúng 2 viên sỏi sau một số bước nhất định. Đề Toán tuyển sinh chuyên năm 2020 2021 sở GD ĐT Nam Định (Đề chuyên) mang đến những thách thức và cơ hội cho các học sinh yêu thích môn Toán, giúp họ thể hiện khả năng và kiến thức của mình trong kỳ thi tuyển sinh vào lớp 10 THPT chuyên.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Vĩnh Long
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Vĩnh Long tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Vĩnh Long. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Vĩnh Long, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Vĩnh Long : + Một công ty vận tải dự định dùng loại xe lớn để vận chuyển 20 tấn hàng hóa theo một hợp đồng. Nhưng khi vào việc, công ty không còn xe lớn nên phải thay bằng những xe nhỏ. Mỗi xe nhỏ vận chuyển được khối lượng ít hơn 1 lần so với mỗi xe lên theo dự định. ðể đảm bảo thời gian đã hợp đồng, công ty phải dùng một số lượng xe nhiều hơn số xe dự định là 1 xe. Hỏi mỗi xe nhỏ vận chuyển bao nhiêu tấn hàng hóa? (Biết các xe cùng loại thi có khối lượng vận chuyển như nhau). [ads] + Cho đường tròn (O) đường kính AB và điểm M bất kì thuộc đường tròn sao cho MA < MB (M ≠ A). Kẻ tiếp tuyến tại A của đường tròn, tiếp tuyến này cắt tia BM ở N. Tiếp tuyến của đường tròn tại M cắt CN ở D. a) Chứng minh bốn điểm A, D, M, O cùng thuộc một đường tròn. b) Chứng minh OD song song BM. c) Qua O kẻ đường thẳng vuông góc với AB và cắt đường thẳng BM tại I. Gọi giao điểm của AI và BD là G. Chứng minh ba điểm N, G, O thẳng hàng. + Cho tam giác ABC có AB = 4cm, AC = 4√3cm, BC = 8cm. a) Chứng minh tam giác ABC vuông. b) Tính số đo góc B, C và độ dài đường cao AH của tam giác ABC.
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Thừa Thiên Huế
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Thừa Thiên Huế. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Thừa Thiên Huế, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Thừa Thiên Huế : + Hưởng ứng Ngày Chủ nhật xanh do UBND tỉnh phát động với chủ đề “Hãy hành động để Thừa Thiên Huế thêm Xanh, Sạch, Sáng”, một trường THCS đã cử học sinh của hai lớp 9A và 9B cùng tham gia làm tổng vệ sinh một con đường, sau 35/12 giờ thì làm xong công việc. Nếu làm riêng từng lớp thì thời gian học sinh lớp 9A làm xong công việc ít hơn thời gian học sinh lớp 9B là 2 giờ. Hỏi nếu mỗi lớp làm riêng thì sau bao nhiêu giờ sẽ làm xong công việc? [ads] + Một chiếc cốc thủy tinh có dạng hình trụ chứa đầy nước, có chiều cao bằng 6cm, bán kính đáy bằng 1cm. Người ta thả từ từ lần lượt vào cốc nước một viên bi hình cầu và một vật có dạng hình nón đều bằng thủy tinh (vừa khít như hình vẽ) thì thấy nước trong chiếc cốc tràn ra ngoài. Tính thể tích của lượng nước còn lại trong chiếc cốc (biết rằng đường kính của viên bi, đường kính của đáy hình nón và đường kính của đáy cốc nước xem như bằng nhau; bỏ qua bề dày của lớp vỏ thủy tinh). + Không sử dụng máy tính cầm tay, giải hệ phương trình: 4x – y = 7 và x + 3y = 5.
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Phú Thọ
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Phú Thọ tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Phú Thọ. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Phú Thọ, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Phú Thọ : + Lớp 9A và lớp 9B của một trường THCS dự định làm 90 chiếc đèn ông sao để tặng các em thiếu nhi nhân dịp Tết Trung Thu. Nếu lớp 9A làm trong 2 ngày và lớp 9B làm trong 1 ngày thì được 23 chiếc đèn; nếu lớp 9A làm trong 1 ngày và lớp 9B làm trong 2 ngày thì được 22 chiếc đèn. Biết rằng số đèn từng lớp làm được trong mỗi ngày là như nhau, hỏi nếu cả hai lớp cùng làm thì hết bao nhiêu ngày để hoàn thành công việc đã dự định? [ads] + Từ một tấm tôn hình chữ nhật có chiều dài bằng 2 (m), chiều rộng bằng 1 (m) gò thành mặt xung quanh của một hình trụ có chiều cao 1 (m), (hai cạnh chiều rộng của hình chữ nhật sau khi gò trùng khít nhau). Thể tích của hình trụ đó bằng? + Cho tứ giác ABCD nội tiếp đường tròn đường kính AC. Biết góc DBC = 55 độ, số đo ACD bằng?
Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Hà Tĩnh
Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Hà Tĩnh tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Hà Tĩnh. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Hà Tĩnh, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Hà Tĩnh : + Một đội xe vận tải được phân công chở 112 tấn hàng. Trước giờ khởi hành có 2 xe phải đi làm nhiệm vụ khác nên mỗi xe còn lại phải chở thêm 1 tấn hàng so với dự tính. Tính số xe ban đầu của đội xe, biết rằng mỗi xe đều chở khối lượng hàng như nhau. [ads] + Cho đường tròn tâm O và điểm M nằm ngoài đường tròn đó. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (A, B là tiếp điểm). Đường thẳng (d) thay đổi đi qua M, không đi qua O và luôn cắt đường tròn tại hai điểm phân biệt C và D (C nằm giữa M và D). a) Chứng minh AMBO là tứ giác nội tiếp. b) Chứng minh MC.MD = MA^2. c) Chứng minh đường tròn ngoại tiếp tam giác OCD luôn đi qua điểm cố định khác O. + Tìm các giá trị của a và b để đường thẳng (d): y = ax + b qua hai điểm M(1;5) và N(2;8).