Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Ninh Thuận

Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Ninh Thuận Bản PDF - Nội dung bài viết Thông báo về đề thi tuyển sinh THPT môn Toán Ninh Thuận năm 2022-2023 Thông báo về đề thi tuyển sinh THPT môn Toán Ninh Thuận năm 2022-2023 Xin chào quý thầy cô giáo và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến bạn đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022-2023 của Sở Giáo dục và Đào tạo Ninh Thuận. Kỳ thi sẽ diễn ra vào ngày 01 tháng 07 năm 2022. Đề thi đã được chuẩn bị kèm theo đáp án và lời giải chi tiết. Dưới đây là một số câu hỏi mẫu từ đề thi: Một lâm trường có hai đội công nhân thực hiện trồng cây phủ xanh đồi trọc. Nếu mỗi công nhân của đội thứ nhất trồng được 30 cây và mỗi công nhân của đội thứ hai trồng được 40 cây thì tổng số cây của cả hai đội trồng là 2880. Hãy tính số công nhân của mỗi đội biết tổng số công nhân của lâm trường là 82. Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Gọi D và E lần lượt là chân đường cao của tam giác ABC hạ từ B và C. Hãy chứng minh rằng tứ giác BEDC là tứ giác nội tiếp. Cho Parabol 2Py = x và đường thẳng d: y = mx + 4. 1. Vẽ Parabol P. 2. Tìm tất cả các giá trị của tham số m để Parabol P và đường thẳng d có đúng một điểm chung. Chúc quý thầy cô giáo và các em học sinh lớp 9 học tập tốt, ôn luyện kỹ trước kỳ thi sắp tới. Đừng quên thực hành nhiều bài tập để chuẩn bị tốt nhất cho kỳ thi quan trọng này. Cảm ơn bạn đã theo dõi thông báo này!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh vào lớp 10 môn Toán năm 2022 - 2023 sở GDĐT Quảng Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Ninh (đề thi dành cho mọi thí sinh); kỳ thi được diễn ra vào sáng thứ Năm ngày 02 tháng 06 năm 2022. Trích dẫn đề tuyển sinh vào lớp 10 môn Toán năm 2022 – 2023 sở GD&ĐT Quảng Ninh : + Hai đội công nhân cùng làm một công việc thì hoàn thành trong 12 ngày. Nếu họ làm riêng thì đội II hoàn thành công việc hết nhiều thời gian hơn đội I là 10 ngày. Hỏi nếu làm riêng, mỗi đội phải làm trong bao nhiêu ngày để xong công việc. + Cho đường tròn tâm O, đường kính AB, dây CD vuông góc với AB tại F. Gọi M là một điểm thuộc cung nhỏ BC (M khác B, M khác C), hai đường thẳng AM và CD cắt nhau tại E. a) Chứng minh tứ giác BMEF nội tiếp. b) Chứng minh tia MA là phân giác của CMD. c) Chứng minh AC2 = AE.AM. d) Gọi I là giao điểm của hai đường thẳng MD và AB, N là giao điểm của hai đường thẳng AM và BC. Chứng minh tâm đường tròn ngoại tiếp tam giác CEN nằm trên đường thẳng CI. + Một tỉnh dự định làm đường điện từ điểm M trên bờ biển đến điểm B trên một hòn đảo. B cách bờ một khoảng BB’ = 2 km, A cách B’ một khoảng AB’ = 3 km (hình vẽ). Biết chi phí làm 1 km đường điện trên bờ là 5 tỷ đồng, dưới biển nước là 13 tỷ đồng. Tìm vị trí điểm C trên đoạn bờ biển AB’ sao cho khi làm đường điện theo đường gấp khúc ACB thì chi phí thấp nhất (coi bờ biển là đường thẳng).
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022 trường ĐHSP Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm 2022 trường Đại học Sư Phạm Hà Nội; đề thi dùng riêng cho thí sinh thi vào lớp chuyên Toán và chuyên Tin học (đề thi vòng 2); kỳ thi được diễn ra vào chiều thứ Tư ngày 01 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi CLB Toán Lim: Nguyễn Duy Khương – Nguyễn Văn Hoàng – Nguyễn Khang – Nguyễn Hoàng Việt). Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022 trường ĐHSP Hà Nội : + Cho đa thức P(x) = ax2 + bx + c (a khác 0). Chứng minh rằng nếu P(x) nhận giá trị nguyên với mỗi số nguyên x thì ba số 2a, a + b, c đều là những số nguyên. Sau đó chứng tỏ nếu ba số 2a, a + b, c là những số nguyên thì P(x) cũng nhận giá trị nguyên với mỗi số nguyên x. + Cho tam giác ABC đều ngoại tiếp (O). Cung nhỏ OB của đường tròn ngoại tiếp tam giác (OBC) cắt đường tròn (O) tại E. Tia BE cắt đường tròn (O) tại điểm thứ hai là F. a) Chứng minh rằng: EO là tia phân giác góc CEF. b) Chứng minh rằng: ABOF là tứ giác nội tiếp. c) Gọi D là giao điểm thứ hai của CE và đường tròn (O). Chứng minh rằng A, F, D thẳng hàng. + Ta viết 10 số 0, 1, …, 9 vào mười ô tròn trong hình bên, mỗi số được viết đúng 1 lần. Sau đó, ta tính tổng ba số trên mỗi đoạn thẳng để nhận được 6 tổng. Có hay không một cách viết 10 số như thế sao cho 6 tổng nhận được là bằng nhau?
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2022 trường ĐHSP Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức tuyển sinh vào lớp 10 THPT chuyên môn Toán năm 2022 trường Đại học Sư Phạm Hà Nội (đề thi dùng cho mọi thí sinh thi vào trường chuyên / Toán chung / Toán điều kiện / vòng 1); kỳ thi được diễn ra vào thứ Tư ngày 01 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi các tác giả Nguyễn Duy Khương, Trịnh Đình Triển, TQĐ, Nguyễn Khang, Nguyễn Hoàng Việt). Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2022 trường ĐHSP Hà Nội : + Trong mặt phẳng tọa độ Oxy, hãy viết phương trình đường thẳng (d): y = ax + b biết (d) đi qua A(2;−1) và song song với đường thẳng y = −3x + 1. + Một cửa hàng kinh doanh điện máy sau khi nhập về chiếc tivi, đã bán chiếc tivi đó; cửa hàng thu được lãi là 10% của giá nhập về. Giả sử cửa hàng tiếp tục nâng giá bán chiếc tivi đó thêm 5% của giá đã bán, nhưng bớt cho khách hàng 245000 đồng, khi đó cửa hàng sẽ thu được tiền lãi là 12% của giá nhập về. Tìm giá tiền khi nhập về của chiếc tivi đó. + Cho tam giác ABC đều nội tiếp (O), điểm D thuộc cung AB nhỏ (D khác A,B). Các tiếp tuyến tại B,C của (O) cắt AD theo thứ tự tại E,G. Gọi I là giao điểm của CE và BG. a) Chứng minh rằng △EBC ∽ △BCG. b) Tính số đo góc BIC. Từ đó chỉ ra BIDE là tứ giác nội tiếp. c) Gọi DI ∩ BC = K. Chứng minh rằng: BK2 = KI.KD.
Đề khảo sát Toán vào lớp 10 lần 2 năm 2022 trường Nguyễn Tất Thành - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát môn Toán ôn thi tuyển sinh vào lớp 10 lần 2 năm học 2021 – 2022 trường THCS & THPT Nguyễn Tất Thành, thành phố Hà Nội; đề thi gồm 08 câu trả lời ngắn (viết đáp số của bài toán, không trình bày lời giải) và 03 câu tự luận (trình bày chi tiết lời giải), thời gian làm bài 90 phút. Trích dẫn đề khảo sát Toán vào lớp 10 lần 2 năm 2022 trường Nguyễn Tất Thành – Hà Nội : + Một chiếc máy bay đang cất cánh từ mặt đất với vận tốc 600 km/h. Biết rằng đường bay là đường thẳng tạo với phương nằm ngang một góc 30°. Hỏi sau 0,5 phút máy bay lên cao được bao nhiêu ki-lô-mét theo phương thẳng đứng? + Một ca nô xuôi dòng từ bến A đến bến B, cách nhau 30 km. Khi đến bến B, ca nô lập tức quay trở về bến A, cả đi lẫn về hết 2 giờ 45 phút. Tính vận tốc của ca nô biết vận tốc của dòng nước là 2km/h. + Cho hình thang cân ABCD có đáy bé AB = 2cm, đáy lớn CD = 8 cm và ngoại tiếp hình tròn tâm O bán kính r. Tính bán kính r.