Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 10 lần 2 năm 2019 - 2020 trường THPT Yên Lạc - Vĩnh Phúc

Ngày … tháng 12 năm 2019, trường THPT Yên Lạc, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 10 lần thứ hai giai đoạn đầu học kỳ 2 năm học 2019 – 2020. Đề KSCL Toán 10 lần 2 năm 2019 – 2020 trường THPT Yên Lạc – Vĩnh Phúc mã đề 301 gồm có 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề KSCL Toán 10 lần 2 năm 2019 – 2020 trường THPT Yên Lạc – Vĩnh Phúc : + Một doanh nghiệp tư nhân X chuyên kinh doanh xe máy các loại. Để kích cầu kinh doanh vào dịp cuối năm doanh nghiệp đang tập chung chiến lược vào kinh doanh xe hon đa VISION với chi phí mua vào một chiếc là 27( triệu đồng) và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất. + Cổng trào Yên Lạc có hình dạng là một parabol (hình vẽ). Biết khoảng cách giữa hai chân cổng bằng 162 m. Trên thành cổng, tại vị trí có độ cao 43m so với mặt đất (điểm M), người ta thả một sợi dây chạm đất (dây căng thẳng theo phương vuông góc với đất). Vị trí chạm đất của đầu sợi dây này cách chân cổng A một đoạn 10 m. Giả sử các số liệu trên là chính xác. Hãy tính độ cao của cổng (tính từ mặt đất đến điểm cao nhất của cổng). [ads] + Khẳng định nào sau đây đúng: A. Hai véc tơ cùng phương với một véc tơ thứ 3 thì cùng phương. B. Hai véc tơ cùng phương với một véc tơ thứ 3 thì cùng hướng. C. Hai véc tơ ngược hướng với một véc tơ thứ 3 thì cùng hướng. D. Hai véc tơ cùng phương với một véc tơ thứ 3 khác véc tơ-không thì cùng phương. + Cho tam giác ABC, gọi M là điểm thuộc cạnh AB, N là điểm thuộc cạnh AC sao cho 3AM = AB, 4AN = 3AC. Gọi O là giao điểm của CM và BN. Trên đường thẳng BC lấy điểm E và đặt BE = xBC. Xác định x để A, O, E thẳng hàng. + Trong các câu sau có bao nhiêu câu là mệnh đề: (1): Số 3 là một số chẵn. (2): 2x + 1 = 3. (3): Các em hãy cố gắng làm bài thi cho tốt. (4): 1 < 3 suy ra 4 < 2.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 10 chuẩn bị năm học 2019 2020 trường Liễn Sơn Vĩnh Phúc
Nhằm giúp các em học sinh khối 10 của nhà trường ôn lại các kiến thức môn Toán đã học từ năm học trước, để có sự chuẩn bị tốt nhất cho năm học mới, trường THPT Liễn Sơn, tỉnh Vĩnh Phúc đã tổ chức kỳ thi khảo sát kiến thức đầu năm Toán 10 năm học 2019 – 2020. Đề khảo sát Toán 10 chuẩn bị năm học 2019 – 2020 trường Liễn Sơn – Vĩnh Phúc gồm 02 trang, đề được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận, trong đó phần trắc nghiệm chiếm 3 điểm với 12 câu, phần tự luận chiếm 7 điểm với 5 câu, thời gian làm bài kiểm tra là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề khảo sát Toán 10 chuẩn bị năm học 2019 – 2020 trường Liễn Sơn – Vĩnh Phúc : + Một đội xe phải chuyên chở 36 tấn hàng. Trước khi làm việc, đội xe đó được bổ sung thêm 3 xe nữa nên mỗi xe chở ít hơn 1 tấn so với dự định. Hỏi đội xe lúc đầu có bao nhiêu xe? Biết rằng số hàng chở trên tất cả các xe có khối lượng bằng nhau. + Cho nửa đường tròn (O) đường kính AB. Gọi C là điểm cố định thuộc đoạn thẳng OB (C khác O và B). Dựng đường thẳng d vuông góc với AB tại điểm C, cắt nửa đường tròn (O) tại điểm M. Trên cung nhỏ MB lấy điểm N bất kỳ (N khác M và B), tia AN cắt đường thẳng d tại điểm F, tia BN cắt đường thẳng d tại điểm E. Đường thẳng AE cắt nửa đường tròn (O) tại điểm D (D khác A). a) Chứng minh: AD.AE = AC.AB. b) Chứng minh: Ba điểm B, F, D thẳng hàng và F là tâm đường tròn nội tiếp tam giác CDN. + Tam giác đều ABC có cạnh 10 cm nội tiếp trong đường tròn, thì bán kính đường tròn là?
Đề thi xếp lớp Toán 10 năm 2019 2020 trường Nguyễn Viết Xuân Vĩnh Phúc
Nhằm phân loại học sinh khối 10 vào các lớp học phù hợp với năng lực học tập của mỗi em, vừa qua, trường THPT Nguyễn Viết Xuân, tỉnh Vĩnh Phúc đã tổ chức kỳ thi khảo sát chất lượng đầu năm môn Toán 10 năm học 2019 – 2020. Đề thi xếp lớp Toán 10 năm 2019 – 2020 trường Nguyễn Viết Xuân – Vĩnh Phúc với mã đề 001 gồm 04 trang, đề được biên soạn theo dạng đề trắc nghiệm khách quan với 50 câu hỏi và bài toán, kiến thức kiểm tra thuộc chương trình Toán THCS, thời gian học sinh làm bài khảo sát là 90 phút, đề thi có đáp án. [ads] Trích dẫn đề thi xếp lớp Toán 10 năm 2019 – 2020 trường Nguyễn Viết Xuân – Vĩnh Phúc : + Đồ thị hàm số y = x^2 cắt đường thẳng d: y = 2(m + 1)x + m + 10 (m là tham số) tại hai điểm phân biệt có hoành độ x1, x2. Gọi S là tập hợp tất cả các giá trị thực của tham số m để biểu thức P = x1 + x2 – 4x1x2 – x1^2 – 9×2^2 đạt giá trị lớn nhất. Tính tổng các phần tử của tập S. + Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để phương trình x^2 – (2m + 3)x + m^2 + 3m = 0 có hai nghiệm x1, x2 thỏa mãn -2022 < x1 < x2 < 2022. Tính số phần tử của tập S. + Cho đường tròn tâm O bán kính R, điểm A nằm ngoài đường tròn (O) sao cho OA = 2R√3. Một đường thẳng đi qua A và cắt đường tròn tại hai điểm M và N. Tích AM.AN bằng?
Đề kiểm tra cuối hè năm 2019 môn Toán 10 trường THPT chuyên Bắc Ninh
Với mục đích kiểm tra lại các kiến thức Toán 9 của học sinh khối 10 sau quá trình nghỉ hè kéo dài, vừa qua, trường THPT chuyên Bắc Ninh đã tổ chức kỳ thi kiểm tra chất lượng môn Toán cuối kỳ nghỉ hè năm 2019, qua đây, học sinh sẽ ôn tập lại các kiến thức Toán 9, nhằm làm nền tảng vững chắc trước khi vào học chương trình môn Toán lớp 10 năm học 2019 – 2020. Đề kiểm tra cuối hè năm 2019 môn Toán 10 trường THPT chuyên Bắc Ninh được dành cho học sinh thi và các lớp chuyên Toán, đề được biên soạn theo dạng đề tự luận với 05 bài toán, học sinh làm bài trong khoảng thời gian 150 phút (không kể thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết. [ads] Trích dẫn đề kiểm tra cuối hè năm 2019 môn Toán 10 trường THPT chuyên Bắc Ninh : + Cho hình vuông ABCD có tâm O. Đường thẳng d quay quanh O, cắt hai cạnh AD và BC lần lượt ở E và F (không trùng với các đỉnh của hình vuông). Qua E và F lần lượt kẻ đường thẳng song song với BD và AC chúng cắt nhau tại I. Kẻ IH vuông góc với EF tại H. Chứng minh rằng: a) Điểm I chạy trên đoạn AB. b) Điểm H thuộc đường tròn cố định và đường thẳng IH đi qua một điểm cố định. + Cho tập X = {1, 2, 3 … 2020} Chứng minh rằng trong số 1011 phần tử bất kì của tập X luôn có hai phần tử nguyên tố cùng nhau. + Chứng minh rằng tồn tại vô số số nguyên dương n thỏa mãn 5^n − 1 chia hết cho n.
Đề thi KSCL Toán 10 lần 3 năm 2018 - 2019 trường Yên Lạc 2 - Vĩnh Phúc
Nhằm mục đích kiểm tra đánh giá chất lượng học tập môn Toán của học sinh khối lớp 10 trong giai đoạn học kỳ 2 năm học 2018 – 2019, trường THPT Yên Lạc 2, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng Toán 10 năm học 2018 – 2019 lần thứ 3. Đề thi KSCL Toán 10 lần 3 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc có mã đề 132, đề gồm 50 câu hỏi và bài toán dạng trắc nghiệm – đúng theo xu hướng thi toán trắc nghiệm hiện hành, đề thi gồm 6 trang, thời gian học sinh làm bài là 90 phút, đề thi có đáp án. Trích dẫn đề thi KSCL Toán 10 lần 3 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc : + Trong một cuộc thi pha chế, hai đội chơi A, B được sử dụng tối đa 24g hương liệu, 9 lít nước và 210g đường để pha chế nước cam và nước táo. Để pha chế 1 lít nước cam cần 30g đường, 1 lít nước và 1g hương liệu; pha chế 1 lít nước táo cần 10g đường, 1 lít nước và 4g hương liệu. Mỗi lít nước cam nhận được 60 điểm thưởng, mỗi lít nước táo nhận được 80 điểm thưởng. Đội A pha chế được a lít nước cam và b lít nước táo và dành được điểm thưởng cao nhất. Hiệu số a – b là? [ads] + Trong mặt phẳng Oxy, cho tam giác ABC có trung điểm của BC là M(2; 2), đường cao kẻ từ B đi qua điểm N(-2;-4), đường thẳng AC đi qua K(0;2) và điểm E(3;-3) là điểm đối xứng của A qua tâm đường tròn ngoại tiếp tam giác ABC. Biết C(a;b) với b < 0. Khi đó ab bằng? + Người ta dùng 120m2 rào để rào một mảnh vườn hình chữ nhật để thả gia súc. Biết một cạnh của hình chữ nhật là bức tường (không phải rào). Tính diện tích lớn nhất của mảnh để có thể rào được?