Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL Toán 10 lần 3 năm 2019 - 2020 trường THPT Nguyễn Viết Xuân - Vĩnh Phúc

Ngày … tháng 05 năm 2020, trường THPT Nguyễn Viết Xuân, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 10 năm học 2019 – 2020 lần thi thứ ba, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 2 (HK2). Đề thi KSCL Toán 10 lần 3 năm 2019 – 2020 trường Nguyễn Viết Xuân – Vĩnh Phúc mã đề 066 gồm có 08 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề thi KSCL Toán 10 lần 3 năm 2019 – 2020 trường Nguyễn Viết Xuân – Vĩnh Phúc : + Cho hai điểm B và C phân biệt. Tập hợp những điểm M thỏa mãn CM.CB = CM^2 thuộc: A. Một đường khác không phải đường tròn. B. Đường tròn (B;BC). C. Đường tròn (C;BC). D. Đường tròn đường kính BC. + Cho hai bất phương trình x^2 – m(m^2 + 1)x + m^4 < 0 (1) và x^2 + 4x + 3 > 0 (2). Các giá trị của tham số m sao cho nghiệm của bất phương trình (1) đều là nghiệm của bất phương trình (2) là? + Cho hệ phương trình: 2x – y = 2 – a và x + 2y = a + 1. Các giá trị thích hợp của tham số a để tổng bình phương hai nghiệm của hệ phương trình đạt giá trị nhỏ nhất? + Cho tam giác ABC, gọi M là trung điểm của BC và G là trọng tâm của tam giác ABC. Câu nào sau đây đúng? + Gọi H là trực tâm tam giác ABC, phương trình các đường thẳng chứa các cạnh và đường cao tam giác là: AB: 7x – y + 4 = 0; BH: 2x + y – 4 = 0; AH: x – y -2 = 0. Phương trình đường thẳng chứa đường cao CH của tam giác ABC là?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng Toán 10 năm học 2017 - 2018 trường THPT Hậu Lộc 4 - Thanh Hóa lần 1
Đề khảo sát chất lượng lần 1 năm học 2017 – 2018 môn Toán khối 10 trường THPT Hậu Lộc 4, tỉnh Thanh Hóa gồm 4 câu hỏi tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi : + Cho hình vuông ABCD trên cạnh BC lấy điểm E. Dựng tia Ax vuông góc với AE, Ax cắt cạnh CD kéo dài tại F, kẻ trung tuyến AI của AEF, AI kéo dài cắt CD tại K. Qua E vẽ đường thẳng song song với AB cắt AI tại G. a. Chứng minh rằng tứ giác AECF nội tiếp b. Chứng minh rằng vtAB + vtEK + vtFA = vtEB + vtFK [ads] c. Chứng minh rằng vtFG = vtKE + Chứng minh rằng với mọi số thực dương a, b, c thì trong ba phương trình sau, ít nhất một phương trình có nghiệm: x^2 – 2√a.x + √bc = 0 x^2 – 2√b.x + √ac = 0 x^2 – 2√c.x + √ab = 0
Đề thi khảo sát chất lượng Toán 10 năm học 2016 - 2017 trường THPT Thạch Thành 1 - Thanh Hóa lần 4
Đề thi khảo sát chất lượng Toán 10 năm học 2016 – 2017 trường THPT Thạch Thành 1 – Thanh Hóa lần 4 gồm 7 bài tập tự luận, có hướng dẫn giải và thang điểm. Trích một số bài toán trong đề: + Cho hàm số: y = x^2 – 4x + c a) Tìm c biết rằng đồ thị của hàm số là một Parabol đi qua điểm A(2;-1) b) Vẽ đồ thị của hàm số ứng với giá trị c tìm được + Cho tam giác đều ABC cạnh a (a > 0). MNPQ là hình chữ nhật nội tiếp tam giác ABC (như hình vẽ). Tính diện tích lớn nhất có thể đạt được của hình chữ nhật MNPQ theo a. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có phương trình đường thẳng chứa đường cao kẻ từ B là: x + 3y – 18 = 0, phương trình đường trung trực của đoạn BC là: 3x + 19y – 279 = 0, đỉnh C thuộc đường thẳng d: 2x – y + 5 = 0. Tìm tọa độ điểm A biết rằng góc BAC = 135 độ.
Đề kiểm tra chất lượng bồi dưỡng Toán 10 năm học 2016 - 2017 trường THPT Hậu Lộc 4 - Thanh Hóa
Đề kiểm tra chất lượng bồi dưỡng Toán 10 năm học 2016 – 2017 trường THPT Hậu Lộc 4 – Thanh Hóa gồm 12 câu hỏi trắc nghiệm và 3 bài tập tự luận, có hướng dẫn giải và thang điểm.
Đề kiểm tra chất lượng môn Toán lớp 10 trường THPT Hàn Thuyên - Bắc Ninh lần 2
Đề kiểm tra chất lượng môn Toán lớp 10 trường THPT Hàn Thuyên – Bắc Ninh lần 2 gồm 50 câu hỏi trắc nghiệm, có đáp án.