Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề minh họa cuối học kì 1 (HK1) lớp 10 môn Toán năm 2023 2024 sở GD ĐT Quảng Ngãi

Nội dung Đề minh họa cuối học kì 1 (HK1) lớp 10 môn Toán năm 2023 2024 sở GD ĐT Quảng Ngãi Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề minh họa kiểm tra cuối học kì 1 môn Toán lớp 10 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Ngãi; đề thi được biên soạn theo cấu trúc 70% trắc nghiệm + 30% tự luận (theo điểm số), có ma trận, bảng đặc tả, đáp án và hướng dẫn chấm điểm. 1 TẬP HỢP. MỆNH ĐỀ Mệnh đề. – Nhận biết: + Phát biểu được các mệnh đề toán học, bao gồm: mệnh đề phủ định; mệnh đề đảo; mệnh đề tương đương; mệnh đề có chứa kí hiệu ∀, ∃; điều kiện cần, điều kiện đủ, điều kiện cần và đủ. – Thông hiểu: + Thiết lập được các mệnh đề toán học, bao gồm: mệnh đề phủ định; mệnh đề đảo; mệnh đề tương đương; mệnh đề có chứa kí hiệu ∀, ∃; điều kiện cần, điều kiện đủ, điều kiện cần và đủ. + Xác định được tính đúng/sai của một mệnh đề toán học trong những trường hợp đơn giản. Tập hợp và các phép toán trên tập hợp. – Nhận biết: + Nhận biết được các khái niệm cơ bản về tập hợp (tập con, hai tập hợp bằng nhau, tập rỗng) và biết sử dụng các kí hiệu. – Thông hiểu: + Thực hiện được phép toán trên các tập hợp (hợp, giao, hiệu của hai tập hợp, phần bù của một tập con) và biết dùng biểu đồ Ven để biểu diễn chúng trong những trường hợp cụ thể. – Vận dụng: + Giải quyết được một số vấn đề thực tiễn gắn với phép toán trên tập hợp (ví dụ: những bài toán liên quan đến đếm số phần tử của hợp các tập hợp). 2 BẤT PHƯƠNG TRÌNH VÀ HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN Bất phương trình bậc nhất hai ẩn. – Nhận biết: + Nhận biết được bất phương trình bậc nhất hai ẩn. + Nhận biết được nghiệm và miền nghiệm của bất phương trình bậc nhất hai ẩn trên mặt phẳng toạ độ. – Thông hiểu: + Mô tả được miền nghiệm của bất phương trình bậc nhất hai ẩn trên mặt phẳng toạ độ. Hệ bất phương trình bậc nhất hai ẩn. – Nhận biết: + Nhận biết được hệ bất phương trình bậc nhất hai ẩn. + Nhận biết được nghiệm và miền nghiệm của hệ bất phương trình bậc nhất hai ẩn trên mặt phẳng toạ độ. – Thông hiểu: + Mô tả được miền nghiệm của hệ bất phương trình bậc nhất hai ẩn trên mặt phẳng toạ độ. – Vận dụng: + Vận dụng được kiến thức về hệ bất phương trình bậc nhất hai ẩn vào giải quyết bài toán thực tiễn, bài toán tìm cực trị của biểu thức F = ax + by trên một miền đa giác. – Vận dụng cao: + Vận dụng được kiến thức về bất phương trình, hệ bất phương trình bậc nhất hai ẩn vào giải quyết một số bài toán thực tiễn (phức hợp, không quen thuộc). 3 HỆ THỨC LƯỢNG TRONG TAM GIÁC Giá trị lượng giác của một góc từ 0° đến 180°. – Nhận biết: + Nhận biết được giá trị lượng giác của một góc từ 0° đến 180°. + Nhận biết được hệ thức liên hệ giữa giá trị lượng giác của các góc phụ nhau, bù nhau, các hệ thức lượng giác cơ bản. – Thông hiểu: + Tính được giá trị lượng giác (đúng hoặc gần đúng) của một góc từ 0° đến 180° bằng máy tính cầm tay. Hệ thức lượng trong tam giác. – Nhận biết: + Nhận biết các hệ thức lượng cơ bản trong tam giác: định lí côsin, định lí sin, công thức tính diện tích tam giác. – Thông hiểu: + Sử dụng được các hệ thức lượng cơ bản trong tam giác: định lí côsin, định lí sin và công thức tính diện tích tam giác để tính các cạnh, các góc chưa biết và diện tích tam giác, độ dài đường cao, đường trung tuyến, bán kính đường tròn nội, ngoại tiếp tam giác. – Vận dụng: + Mô tả được cách giải tam giác và vận dụng được vào việc giải một số bài toán có nội dung thực tiễn (ví dụ: xác định khoảng cách giữa hai địa điểm khi gặp vật cản, xác định chiều cao của vật khi không thể đo trực tiếp) hoặc các bài toán khác về hệ thức lượng trong tam giác. 4 VECTƠ Các khái niệm mở đầu. – Nhận biết: + Nhận biết được khái niệm vectơ, hai vectơ cùng phương, hai vectơ cùng hướng, hai vectơ bằng nhau, vectơ-không. – Thông hiểu: + Mô tả được một số đại lượng trong thực tiễn bằng vectơ. + Tính được độ dài vectơ. Tổng và hiệu của hai vectơ. – Nhận biết: + Nhận biết được quy tắc ba điểm, quy tắc hình bình hành, quy tắc về hiệu vectơ, quy tắc trung điểm và trọng tâm tam giác. – Thông hiểu: + Thực hiện được các phép toán tổng và hiệu hai vectơ. + Mô tả được một số đại lượng trong thực tiễn bằng vectơ. – Vận dụng: + Vận dụng vectơ trong các bài toán tổng hợp lực, tổng hợp vận tốc. Tích của một vectơ với một số. – Nhận biết: + Nhận biết định nghĩa tích của vectơ với một số, các tính chất. + Biết được điều kiện để hai vectơ cùng phương, tính chất trung điểm, tính chất trọng tâm. – Thông hiểu: + Thực hiện được phép nhân vectơ với một số. + Mô tả các mối quan hệ cùng phương, cùng hướng bằng vectơ. Vectơ trong mặt phẳng tọa độ. – Nhận biết: + Nhận biết được vectơ theo hai vectơ đơn vị, tìm được tọa độ vectơ khi biết tọa độ hai điểm, tìm độ dài vectơ khi biết tọa độ. – Thông hiểu: + Tính được tọa độ điểm, vectơ thỏa mãn đẳng thức, tọa độ của vectơ tổng, tọa độ trung điểm, trọng tâm, tọa độ đỉnh hình bình hành, vectơ cùng phương, độ dài vectơ. – Vận dụng: + Vận dụng kiến thức tọa độ của điểm, của vectơ để giải các bài toán tìm tọa độ của điểm, của vectơ hoặc các bài toán khác có vận dụng thực tiễn. Tích vô hướng của hai vectơ. – Nhận biết: + Nhận biết được tích vô hướng hai vectơ, biểu thức tọa độ tích vô hướng, góc giữa hai vectơ. – Thông hiểu: + Tính được tích vô hướng hai vectơ, góc giữa hai vectơ, biểu thức tọa độ tích vô hướng, tìm tọa độ điểm, vectơ liên quan đến độ dài vectơ, tích vô hướng. – Vận dụng: + Sử dụng được vectơ và các phép toán trên vectơ để giải thích một số hiện tượng có liên quan đến Vật lí và Hoá học (ví dụ: những vấn đề liên quan đến lực, đến chuyển động). + Vận dụng được kiến thức về vectơ để giải một số bài toán hình học và một số bài toán liên quan đến thực tiễn (ví dụ: xác định lực tác dụng lên vật). 5 CÁC SỐ ĐẶC TRƯNG CỦA MẪU SỐ LIỆU KHÔNG GHÉP NHÓM Số gần đúng, sai số. – Nhận biết: + Hiểu được khái niệm số gần đúng, sai số tuyệt đối. – Thông hiểu: + Xác định được số gần đúng của một số với độ chính xác cho trước. + Xác định được sai số tương đối của số gần đúng. – Vận dụng: + Xác định được số quy tròn của số gần đúng với độ chính xác cho trước. + Biết sử dụng máy tính cầm tay để tính toán với các số gần đúng. Các số đặc trưng đo xu thế trung tâm. – Nhận biết: + Nắm các khái niệm về số trung bình, số trung vị, tứ phân vị, mốt và ý nghĩa. – Thông hiểu: + Biết tìm số trung bình và mốt dựa vào bảng số liệu. – Vận dụng: + Tính được số đặc trưng đo xu thế trung tâm cho mẫu số liệu không ghép nhóm: số trung bình cộng (hay số trung bình), trung vị (median), tứ phân vị (quartiles), mốt (mode). – Vận dụng cao: + Giải thích được ý nghĩa và vai trò của các số đặc trưng nói trên của mẫu số liệu trong thực tiễn. + Chỉ ra được những kết luận nhờ ý nghĩa của số đặc trưng nói trên của mẫu số liệu trong trường hợp đơn giản. Các số đặc trưng đo mức độ phân tán. – Nhận biết: + Nhận biết được mối liên hệ giữa thống kê với những kiến thức của các môn học trong Chương trình lớp 10 và trong thực tiễn. – Thông hiểu: + Giải thích được ý nghĩa và vai trò của các số đặc trưng nói trên của mẫu số liệu trong thực tiễn. – Vận dụng: + Tính được số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm: khoảng biến thiên, khoảng tứ phân vị, phương sai, độ lệch chuẩn. – Vận dụng cao: + Chỉ ra được những kết luận nhờ ý nghĩa của số đặc trưng nói trên của mẫu số liệu trong trường hợp đơn giản. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Tuyển tập một số đề thi học kì 1 Toán 10 năm 2020 - 2021 - Bùi Đình Thông
Tài liệu gồm 34 trang, được biên soạn bởi thầy giáo Bùi Đình Thông, tuyển tập một số đề thi học kì 1 Toán 10 năm học 2020 – 2021, giúp học sinh khối 10 ôn tập để chuẩn bị cho kỳ thi học kì 1 Toán 10 sắp tới.
Đề thi HK1 Toán 10 năm 2020 - 2021 trường THPT Nguyễn Công Trứ - TP HCM
Sáng thứ Bảy ngày 26 tháng 12 năm 2020, trường THPT Nguyễn Công Trứ, quận Gò Vấp, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng môn Toán 10 giai đoạn cuối học kỳ 1 năm học 2020 – 2021. Đề thi HK1 Toán 10 năm 2020 – 2021 trường THPT Nguyễn Công Trứ – TP HCM gồm 01 trang, đề được biên soạn theo dạng tự luận với 08 bài toán, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HK1 Toán 10 năm 2020 – 2021 trường THPT Nguyễn Công Trứ – TP HCM : + Để lập đường dây cao thế từ vị trí A đến vị trí B, ta phải tránh một ngọn núi nên ta phải nối thẳng đường dây từ vị trí A đến vị trí C dài 10 km rồi nối từ vị trí C thẳng đến vị trí B dài 8km. Biết góc tạo bởi hai đoạn dây AC và CB là 120 độ. Hỏi so với việc nối thẳng từ A đến B người ta tốn thêm bao nhiêu km dây? + Trong mặt phằng tọa độ Oxy, cho ba điểm A(-1;4), B(2;5), C(3;-8). a) Chứng minh tam giác ABC vuông tại A. Suy ra tâm đường tròn ngoại tiếp tam giác ABC. b) Tính diện tích tam giác ABC. c) Tìm điểm D thuộc Oy có tung độ nhỏ hơn 3 sao cho tam giác ABD cân tại A. + Tìm m để phương trình (x + 2)(x2 + 2x + m) = 0 có ba nghiệm âm phân biệt.
Đề thi HK1 Toán 10 năm 2020 - 2021 trường THPT Phan Ngọc Hiển - Cà Mau
Đề thi HK1 Toán 10 năm 2020 – 2021 trường THPT Phan Ngọc Hiển – Cà Mau mã đề 134 gồm có 02 trang, đề được biên soạn theo dạng trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 20 câu (4,0 điểm), phần tự luận gồm 05 câu (6,0 điểm), thời gian làm bài 90 phút, kỳ thi được tổ chức vào thứ Năm ngày 24 tháng 12 năm 2020, đề thi có đáp án mã đề 134, 215, 315, 418. Trích dẫn đề thi HK1 Toán 10 năm 2020 – 2021 trường THPT Phan Ngọc Hiển – Cà Mau : + Trong các câu sau, câu nào không phải là mệnh đề? A. Bạn có thường đi du lịch vào kì nghỉ hè không? B. Hà Nội là thủ đô của Việt Nam. C. 2 là số nguyên tố chẵn. D. Một năm có 12 tháng. + Trong mặt phẳng Oxy, cho tam giác ABC với A(2;4); B(-3;2); C(5;1). a. Tìm toạ độ trọng tâm G của tam giác ABC. b. Tìm tọa độ điểm D sao cho ABCD là hình bình hành. + Cho tam giác ABC. Gọi M là một điểm trên cạnh BC sao cho MB = 4MC. Khi đó?
Đề thi HK1 Toán 10 (chuyên Toán) năm 2020 - 2021 trường chuyên Nguyễn Huệ - Hà Nội
Đề thi HK1 Toán 10 (chuyên Toán) năm 2020 – 2021 trường chuyên Nguyễn Huệ – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi HK1 Toán 10 (chuyên Toán) năm 2020 – 2021 trường chuyên Nguyễn Huệ – Hà Nội : + Cho tam giác ABC thỏa mãn: cos2A + cos2B + cos2C + 1 = 0. Chứng minh rằng tam giác ABC là tam giác vuông. + Cho p là một số nguyên tố lẻ. Chứng minh rằng A = 7^p – 5^p – 2 luôn là bội số của 6p. + Cho O, I lần lượt là tâm đường tròn ngoại tiếp và nội tiếp của tam giác ABC. Đường thẳng vuông góc với AI tại A cắt BI, CI tại K, M. Gọi B’, C’ lần lượt là giao điểm của BI với AC và CI với AB. Đường thẳng B’C’ cắt đường tròn (O) tại N, E. 1. Chứng minh rằng KM, NE, BC đồng quy. 2. Chứng minh rằng M, N, E, K đồng viên.