Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 7 môn Toán năm 2009 2010 phòng GD ĐT Phú Thiện Gia Lai

Nội dung Đề học sinh giỏi huyện lớp 7 môn Toán năm 2009 2010 phòng GD ĐT Phú Thiện Gia Lai Bản PDF - Nội dung bài viết Đề Học Sinh Giỏi Huyện Lớp 7 Môn Toán Năm 2009 - 2010 Phòng GD ĐT Phú Thiện Gia Lai Đề Học Sinh Giỏi Huyện Lớp 7 Môn Toán Năm 2009 - 2010 Phòng GD ĐT Phú Thiện Gia Lai Sytu xin gửi đến quý thầy, cô giáo và các em học sinh lớp 7 đề Học Sinh Giỏi Huyện Toán lớp 7 năm 2009 - 2010 của Phòng GD&ĐT Phú Thiện - Gia Lai. Đề thi bao gồm đề bài, đáp số, lời giải và thang điểm để giúp các em tự kiểm tra và tự đánh giá kiến thức của mình. Trong đề thi, có các bài toán như sau: + Cho tam giác ABC vuông tại A; K là trung điểm của BC. Trên tia đối của tia KA lấy D sao cho KD = KA. a. Chứng minh: CD // AB. b. Gọi H là trung điểm của AC; BH cắt AD tại M; DH cắt BC tại N. Chứng minh rằng: ABH = CDH. c. Chứng minh: HMN cân. + Chứng minh rằng số có dạng abcabc luôn chia hết cho 11. + Cho tỉ lệ thức d c b a. Chứng minh rằng: (a + 2c)(b + d) = (a + c)(b + 2d). Đề thi này không chỉ giúp học sinh rèn luyện kỹ năng giải bài toán mà còn đề cao kỹ năng suy luận và chứng minh. Hy vọng rằng đề thi sẽ giúp các em nắm vững kiến thức và chuẩn bị tốt cho kỳ thi HSG sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 7 năm 2020 - 2021 phòng GDĐT Trực Ninh - Nam Định
Đề thi học sinh giỏi Toán 7 năm 2020 – 2021 phòng GD&ĐT Trực Ninh – Nam Định được biên soạn theo hình thức đề thi 100% tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 120 phút. Trích dẫn đề thi học sinh giỏi Toán 7 năm 2020 – 2021 phòng GD&ĐT Trực Ninh – Nam Định : + Cho ABC vuông tại A có B 2C. Kẻ AH BC (H BC). Trên tia HC lấy D sao cho HD HB. Từ C kẻ đường thẳng CE vuông góc với đường thẳng AD (E AD). a) Tam giác ABD là tam giác gì? Vì sao? b) Chứng minh DH DE HE AC. c) So sánh 2 HE và 2 2 4 BC AD. d) Gọi K giao AH và CE, lấy điểm I bất kì thuộc đoạn thẳng HE I khác H; I khác E. Chứng minh 3 2 AC IA IK IC. + Chứng minh đa thức sau không có nghiệm. + Chứng minh rằng 2021 10 539 9 có giá trị là một số tự nhiên.
Đề thi HSG Toán 7 năm 2020 - 2021 trường THCS Kim Đồng - Quảng Nam
Ngày … tháng … năm 2021, trường THCS Kim Đồng, thành phố Hội An, tỉnh Quảng Nam tổ chức kỳ thi khảo sát học sinh giỏi lớp 7 môn Toán năm học 2020 – 2021. Đề thi HSG Toán 7 năm 2020 – 2021 trường THCS Kim Đồng – Quảng Nam gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút.
Đề thi Olimpic Toán 7 năm 2020 - 2021 phòng GDĐT Quốc Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olimpic Toán 7 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi Olimpic Toán 7 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội : + Ba thửa ruộng hình chữ nhật A, B, C có cùng diện tích. Chiều rộng của 3 thửa ruộng A, B, C lần lượt tỷ lệ với 3 ; 4 ; 5. Chiều dài của thửa ruộng A nhỏ hơn tổng chiều dài của 2 thửa ruộng B và C là 35m. Tính chiều dài mỗi thửa ruộng. + Cho ABC vuông cân tại A. M là trung điểm của BC. Lấy điểm D bất kỳ trên đoạn BM. H, I thứ tự là hình chiếu của B, C trên đường thẳng AD. Chứng minh rằng: a/ BH = AI. b/ BH2 + CI2 có giá trị không đổi. c/ IM là phân giác của DIC. + Cho ABC cân tại A có A 3C. Vẽ tia Cx sao cho CA là tia phân giác của BCx Cx cắt BA tại D. Trong hình vẽ có bao nhiêu tam giác cân? Vì sao?
Đề thi HSG cấp huyện Toán 7 năm 2020 - 2021 phòng GDĐT Lương Tài - Bắc Ninh
Đề thi HSG cấp huyện Toán 7 năm 2020 – 2021 phòng GD&ĐT Lương Tài – Bắc Ninh gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 13 tháng 04 năm 2021.